Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0293856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551935

RESUMO

Light-sheet microscopy has made possible the 3D imaging of both fixed and live biological tissue, with samples as large as the entire mouse brain. However, segmentation and quantification of that data remains a time-consuming manual undertaking. Machine learning methods promise the possibility of automating this process. This study seeks to advance the performance of prior models through optimizing transfer learning. We fine-tuned the existing TrailMap model using expert-labeled data from noradrenergic axonal structures in the mouse brain. By changing the cross-entropy weights and using augmentation, we demonstrate a generally improved adjusted F1-score over using the originally trained TrailMap model within our test datasets.


Assuntos
Aprendizado Profundo , Animais , Camundongos , Microscopia , Axônios , Aprendizado de Máquina , Encéfalo/diagnóstico por imagem
2.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961439

RESUMO

Light-sheet microscopy has made possible the 3D imaging of both fixed and live biological tissue, with samples as large as the entire mouse brain. However, segmentation and quantification of that data remains a time-consuming manual undertaking. Machine learning methods promise the possibility of automating this process. This study seeks to advance the performance of prior models through optimizing transfer learning. We fine-tuned the existing TrailMap model using expert-labeled data from noradrenergic axonal structures in the mouse brain. By fine-tuning the final two layers of the neural network at a lower learning rate of the TrailMap model, we demonstrate an improved recall and an occasionally improved adjusted F1-score within our test dataset over using the originally trained TrailMap model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA