Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood ; 121(15): 3033-40, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23446736

RESUMO

Generation of T cells endowed with graft-versus-leukemia (GVL) and depleted of graft-versus-host (GVH) activity represents a highly desirable goal in bone marrow transplantation (BMT). Here, we demonstrate that donor anti-third-party CD8 T cells with central memory phenotype (Tcm) exhibit marked GVL reactivity through a unique T-cell receptor-independent mechanism. Thus, in a residual disease mouse model, Tcm therapy following autologous BMT led to significant survival prolongation, with 30% to 40% of the treated mice displaying long-term tumor-free survival. A more impressive finding was that infusion of donor Tcm in an allogeneic model rapidly eliminated residual lymphoma cells and led to long-term survival of 100% in the absence of GVH disease. Collectively, the strong GVL reactivity of anti-third-party Tcm, coupled with their demonstrated enhancement of bone marrow allografting, suggests that the use of Tcm therapy in conjunction with allogeneic T-cell-depleted BMT could be of particular benefit in patients with B-cell malignancies who cannot tolerate intensive myeloablative conditioning.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Linfoma/imunologia , Neoplasia Residual/imunologia , Animais , Apoptose/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Transplante de Medula Óssea/métodos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Feminino , Citometria de Fluxo , Doença Enxerto-Hospedeiro/imunologia , Efeito Enxerto vs Leucemia/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Fatores de Tempo , Transplante Homólogo
2.
Blood ; 121(7): 1220-8, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23223359

RESUMO

Transplantation of T cell-depleted BM (TDBM) under mild conditioning, associated with minimal toxicity and reduced risk of GVHD, offers an attractive therapeutic option for patients with nonmalignant hematologic disorders and can mediate immune tolerance to subsequent organ transplantation. However, overcoming TDBM rejection after reduced conditioning remains a challenge. Here, we address this barrier using donorderived central memory CD8(+) T cells (Tcms), directed against third-party antigens. Our results show that fully allogeneic or (hostXdonor)F1-Tcm, support donor chimerism (> 6 months) in sublethally irradiated (5.5Gy) mice, without GVHD symptoms. Chimerism under yet lower irradiation (4.5Gy) was achieved by combining Tcm with short-term administration of low-dose Rapamycin. Importantly, this chimerism resulted in successful donor skin acceptance, whereas third-party skin was rejected. Tracking of host anti-donor T cells (HADTCs), that mediate TDBMT rejection, in a novel bioluminescence-imaging model revealed that Tcms both induce accumulation and eradicate HADTCs in the LNs,concomitant with their elimination from other organs, including the BM. Further analysis with 2-photon microcopy revealed that Tcms form conjugates with HADTCs, resulting in decelerated and confined movement of HADTCs within the LNs in an antigen-specific manner. Thus, anti-third-party Tcms support TDBMT engraftment under reduced-conditioning through lymph-node sequestration and deletion of HADTCs, offering a novel and potentially safe approach for attaining stable hematopoietic chimerism.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimeras de Transplante/imunologia , Condicionamento Pré-Transplante/métodos , Animais , Transplante de Medula Óssea/imunologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doenças Hematológicas/imunologia , Doenças Hematológicas/terapia , Humanos , Memória Imunológica , Imunossupressores/administração & dosagem , Isoantígenos , Linfonodos/imunologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Sirolimo/administração & dosagem , Transplante de Pele/imunologia , Linfócitos T/imunologia , Doadores de Tecidos
3.
Blood ; 120(8): 1647-57, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22776817

RESUMO

Immature dendritic cells (imDCs) can have a tolerizing effect under normal conditions or after transplantation. However, because of the significant heterogeneity of this cell population, it is extremely difficult to study the mechanisms that mediate the tolerance induced or to harness the application of imDCs for clinical use. In the present study, we describe the generation of a highly defined population of imDCs from hematopoietic progenitors and the direct visualization of the fate of TCR-transgenic alloreactive CD4(+) and CD8(+) T cells after encountering cognate or noncognate imDCs. Whereas CD4(+) T cells were deleted via an MHC-independent mechanism through the NO system, CD8(+) T-cell deletion was found to occur through a unique MHC-dependent, perforin-based killing mechanism involving activation of TLR7 and signaling through Triggering Receptor-1 Expressed on Myeloid cells (TREM-1). This novel subpopulation of perforin-expressing imDCs was also detected in various lymphoid tissues in normal animals and its frequency was markedly enhanced after GM-CSF administration.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Granzimas/imunologia , Células-Tronco Hematopoéticas/imunologia , Glicoproteínas de Membrana/imunologia , Perforina/imunologia , Receptores Imunológicos/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Células Dendríticas/citologia , Feminino , Células-Tronco Hematopoéticas/citologia , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos C57BL , Receptor Gatilho 1 Expresso em Células Mieloides , Quinases da Família src/imunologia
4.
Transplant Cell Ther ; 30(1): 71.e1-71.e13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890590

RESUMO

Previous studies in mice demonstrated that CD8 T cells exhibit marked veto activity enhancing engraftment in several models for T cell-depleted bone marrow (TDBM) allografting. To reduce the risk of graft-versus-host disease (GVHD) associated with allogeneic CD8 veto T cells, these studies made use of naive CD8 T cells stimulated against third-party stimulators under cytokine deprivation and subsequent expansion in the presence of IL-15. More recently, it was shown that mouse CD8 veto T cells can be generated by stimulating CD8 memory T cells from ovalbumin immunized mice under cytokine deprivation, using ovalbumin as a third-party antigen. These cells also exhibited substantial enhancement of BM allografting without GVHD. In this study, we tested the hypothesis that stimulation and expansion of human CD8 memory T cells under IL-15 and IL-7 deprivation during the early phase of activation against recall viral antigens can lead to substantial loss of alloreactive T clones while retaining marked veto activity. Memory CD8 T cells were enriched by removal of CD45RA+, CD4+, and CD56+ cells from peripheral blood of cytomegalovirus (CMV)- and Epstein-Barr virus (EBV)-positive donors. In parallel, CD14+ monocytes were isolated; differentiated into mature dendritic cells (mDCs); pulsed with a library of CMV, EBV, adenovirus, and BK virus peptides; and irradiated. The CD8 T cell-enriched fraction was then cultured with the pulsed mDCs in the presence of IL-21 for 3 days, after which IL-15 and IL-7 were added. After 12 days of culture, the cells were tested by limiting dilution analysis for the frequency of alloreactive T cell clones and their veto activity. In preclinical runs using GMP reagents, we established that within 12 days of culture, a large number of highly homogenous CD8 T cells, predominantly expressing a central memory phenotype, could be harvested. These cells exhibited marked veto activity in vitro and >3-log depletion of alloreactivity. Based on these preclinical data, a phase 1-2 clinical trial was initiated to test the safety and efficacy of these antiviral CD8 central memory veto cells in the context of nonmyeloablative (NMA) T cell-depleted haploidentical hematopoietic stem cell transplantation (HSCT). In 2 validation runs and 11 clinical runs using GMP reagents, >1 × 1010 cells were generated from a single leukapheresis in 12 out of 13 experiments. At the end of 12 days of culture, there were 97 ± 2.5% CD3+CD8+ T cells, of which 84 ± 9.0% (range, 71.5% to 95.1%) exhibited the CD45RO+CD62L+ CM phenotype. Antiviral activity tested by intracellular expression of INF-γ and TNF-α and showed an average of 38.8 ± 19.6% positive cells on 6 hours of stimulation against the viral peptide mixture. Our results demonstrate a novel approach for depleting alloreactive T cell clones from preparations of antiviral CD8 veto cells. Based on these results, a phase 1-2 clinical trial is currently in progress to test the safety and efficacy of these veto cells in the context of NMA haploidentical T cell-depleted HSCT. Studies testing the hypothesis that these non-alloreactive CD8 T cells could potentially offer a platform for off-the-shelf veto chimeric antigen receptor T cell therapy in allogenic recipients, are warranted.


Assuntos
Infecções por Citomegalovirus , Infecções por Vírus Epstein-Barr , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Interleucina-15 , Células T de Memória , Interleucina-7 , Ovalbumina , Herpesvirus Humano 4/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Antígenos Comuns de Leucócito/metabolismo , Antivirais
5.
Blood ; 117(3): 1042-52, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21045195

RESUMO

Cytotoxic T lymphocytes (CTLs) suppress T cell responses directed against their antigens regardless of their own T cell receptor (TCR) specificity. This makes the use of CTLs promising for tolerance induction in autoimmunity and transplantation. It has been established that binding of the CTL CD8 molecule to the major histocompatibility complex (MHC) class I α3 domain of the recognizing T cell must be permitted for death of the latter cell to ensue. However, the signaling events triggered in the CTL by this molecular interaction in the absence of TCR recognition have never been clarified. Here we use single-cell imaging to study the events occurring in CTLs serving as targets for recognition by specific T cells. We demonstrate that CTLs actively respond to recognition by polarizing their cytotoxic granules to the contact area, releasing their lethal cargo, and vigorously proliferating. Using CTLs from perforin knockout (KO) mice and lymphocyte specific kinase (Lck) knockdown with specific small interfering RNA (siRNA), we show that the killing of the recognizing CD8 T cell is perforin dependent and is initiated by Lck signaling in the CTL. Collectively, these data suggest a novel mechanism in which the entire cascade generally triggered by TCR engagement is "hijacked" in CTLs serving as targets for T cell recognition without TCR ligation.


Assuntos
Grânulos Citoplasmáticos/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Grânulos Citoplasmáticos/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Citotoxicidade Imunológica/imunologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Citometria de Fluxo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Camundongos Endogâmicos , Camundongos Knockout , Modelos Imunológicos , Ovalbumina/farmacologia , Fragmentos de Peptídeos/farmacologia , Perforina/genética , Perforina/metabolismo , Interferência de RNA , Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo
6.
Blood ; 115(10): 2095-104, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20042725

RESUMO

Enabling engraftment of allogeneic T cell-depleted bone marrow (TDBM) under reduced-intensity conditioning represents a major challenge in bone marrow transplantation (BMT). Anti-third-party cytotoxic T lymphocytes (CTLs) were previously shown to be endowed with marked ability to delete host antidonor T cells in vitro, but were found to be less effective in vivo. This could result from diminished lymph node (LN) homing caused by the prolonged activation, which induces a CD44(+)CD62L(-) effector phenotype, and thereby prevents effective colocalization with, and neutralization of, alloreactive host T cells (HTCs). In the present study, LN homing, determined by imaging, was enhanced upon culture conditions that favor the acquisition of CD44(+)CD62L(+) central memory cell (Tcm) phenotype by anti-third-party CD8(+) cells. These Tcm-like cells displayed strong proliferation and prolonged persistence in BM transplant recipients. Importantly, adoptively transferred HTCs bearing a transgenic T-cell receptor (TCR) with antidonor specificity were efficiently deleted only by donor-type Tcms. All these attributes were found to be associated with improved efficacy in overcoming T cell-mediated rejection of TDBM, thereby enabling high survival rate and long-term donor chimerism, without causing graft-versus-host disease. In conclusion, anti-third-party Tcms, which home to recipient LNs and effectively delete antidonor T cells, could provide an effective and novel tool for overcoming rejection of BM allografts.


Assuntos
Transplante de Medula Óssea/métodos , Linfócitos T CD8-Positivos/transplante , Doença Enxerto-Hospedeiro/prevenção & controle , Memória Imunológica/fisiologia , Tolerância ao Transplante/imunologia , Animais , Transplante de Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Quimiotaxia de Leucócito/fisiologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Memória Imunológica/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Nus , Doadores de Tecidos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo , Regulação para Cima/imunologia
7.
Best Pract Res Clin Haematol ; 24(3): 393-401, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21925092

RESUMO

Haploidentical hematopoietic stem cell transplantation (HSCT) offers the advantage of readily available family member donors for nearly all patients. A 'megadose' of purified CD34+ hematopoietic stem cells is used to overcome the host's residual immunity surviving the myeloablative conditioning, while avoiding severe GVHD. However, the number of CD34+ cells that can be harvested is insufficient for overcoming the large numbers of host T cells remaining after reduced intensity conditioning (RIC). Therefore, combining a 'megadose' of CD34+ HSCT with other tolerizing cells could potentially support and promote successful engraftment of haploidentical purified stem cell transplantation under a safer RIC. One approach to address this challenge could be afforded by using Donor CD8 T cells directed against 3rd-party stimulators, bearing an ex-vivo induced central memory phenotype (Tcm). These Tcm cells,depleted of GVH reactivity, were shown to be highly efficient in overcoming host T cells mediated rejection and in promoting fully mismatched bone-marrow (BM) engraftment, in HSCT murine models. This is likely due to the marked lymph node homing of the Tcm, their strong proliferative capacity and prolonged persistence in BM transplant recipients. Thus, combining anti 3rd-party Tcm cell therapy with a 'megadose' of purified CD34+ stem cells, could offer a safer RIC protocol for attaining hematopoietic chimerism in patients with hematological diseases and as a platform for organ transplantation or cell therapy in cancer patients.


Assuntos
Linfócitos T CD8-Positivos/transplante , Transplante de Células-Tronco Hematopoéticas , Memória Imunológica , Imunoterapia Adotiva/métodos , Condicionamento Pré-Transplante/métodos , Tolerância ao Transplante/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Masculino , Camundongos , Doadores de Tecidos , Transplante Homólogo
8.
Transplantation ; 90(4): 380-6, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20595932

RESUMO

BACKGROUND: Anti third-party cytotoxic T lymphocytes (CTLs) were shown to exhibit marked veto activity, thereby inducing transplantation tolerance across major histocompatibility antigens. Elimination of effector cells requires co-expression of CD8 and FasL on the veto cells and is mediated through CD8-major histocompatibility complex (MHC) class I interaction and Fas-Fas ligand signaling. METHODS: To further interrogate the signaling events induced in the effector cells on their interaction with veto cell populations, effector cells from 2C transgenic mice were preincubated with different signaling inhibitors and were subject to fluorescence-activated cell sorting and western blot analysis. RESULTS: Screening with inhibitors revealed specific inhibition only with the map kinase (MEK)/extracellular signal regulated kinase (ERK) inhibitor, U0126. Accordingly, fluorescence-activated cell sorting and western blot analysis showed that ERK phosphorylation is induced in the effector cells within 1 hr of incubation with the veto cells. ERK phosphorylation had no effect on the Fas expression level, nor was it reduced when using effector cells from Fas KO mice. Examination of ERK phosphorylation in high and low MHC-I expressing effectors revealed marked differences, suggesting that the interaction between CD8 on the veto CTL, and MHC-I on the effector cells is likely responsible for ERK phosphorylation. Furthermore, XIAP in 2C cells is specifically reduced on binding to the cognate veto cells during the mixed lymphocyte reaction but before the appearance of Annexin V reactivity. CONCLUSIONS: These results suggest that the interaction between CD8 on veto CTL and the MHC class I alpha3 domain on the effector cell, leads to phosphorylation of MEK/ERK in the latter cell, associated with a significant reduction of XIAP levels which, in turn, enables potent triggering of Fas-FasL mediated apoptosis on cognate binding of the veto CTLs.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T/imunologia , Animais , Apoptose , Deleção Clonal/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Cinética , Depleção Linfocítica , Camundongos , Fosforilação , Transdução de Sinais/imunologia , Receptor fas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA