Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23573, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934567

RESUMO

Natural compounds, such as carotenoids, flavonoids, anthocyanins, or terpenoids, are physiologically active components found in plants (pigments), often known as phytochemicals or phytonutrients. The in vitro cytotoxic and anticolon cancer effects of biologically bavachin, bavachinin, artepillin C, and aromadendrin compounds against SW48, SNU-C1, COLO 205, RKO, LS411N, and SW1417 cancer cell lines were assessed. Results of enzymes and antibacterial, antifungal were in level of micromolar that is good impacts. These natural compounds may be antidiabetic, anticancer, and antibacterial candidates for drug design. IC50 results were obtained between 14-19 and 5-119 µM for α-amylase and α-glucosidase, respectively. Good inhibitor Bavachinin was detected for both enzymes (IC50 for α-amylase: 14.37 µM and IC50 for α-glucosidase: 5.27 µM). The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against pancreatic α-amylase and α-glucosidase were assessed by conducting the molecular docking study. The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against some of the expressed surface receptor proteins (CD44, CD47, CXCR4, EGFR, folate receptor, HER2, and endothelin receptor) in the mentioned cell lines were investigated using the molecular docking calculations. The results illustrated the atomic-level properties and potential interactions. These chemicals have high binding affinities to the enzymes and proteins, according to the docking scores. In addition, the compounds formed strong contacts with the enzymes and receptors. Thus, these compounds could be potential inhibitors for enzymes and cancer cells.


Assuntos
Antocianinas , Neoplasias , Fenilpropionatos , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , alfa-Amilases , Antibacterianos
2.
Arch Pharm (Weinheim) ; 357(2): e2300544, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013251

RESUMO

Diabetes mellitus (DM) has prevailed as a chronic health condition and has become a serious global health issue due to its numerous consequences and high prevalence. We have synthesized a series of hydrazone derivatives and tested their antidiabetic potential by inhibiting the essential carbohydrate catabolic enzyme, "α-glucosidase." Several approaches including fourier transform infrared, 1 H NMR, and 13 C NMR were utilized to confirm the structures of all the synthesized derivatives. In vitro analysis of compounds 3a-3p displayed more effective inhibitory activities against α-glucosidase with IC50 in a range of 2.80-29.66 µM as compared with the commercially available inhibitor, acarbose (IC50 = 873.34 ± 1.67 M). Compound 3h showed the highest inhibitory potential with an IC50 value of 2.80 ± 0.03 µM, followed by 3i (IC50 = 4.13 ± 0.06 µM), 3f (IC50 = 5.18 ± 0.10 µM), 3c (IC50 = 5.42 ± 0.11 µM), 3g (IC50 = 6.17 ± 0.15 µM), 3d (IC50 = 6.76 ± 0.20 µM), 3a (IC50 = 9.59 ± 0.14 µM), and 3n (IC50 = 10.01 ± 0.42 µM). Kinetics analysis of the most potent compound 3h revealed a concentration-dependent form of inhibition by 3h with Ki value = 4.76 ± 0.0068 µM. Additionally, an in silico docking approach was applied to predict the binding patterns of all the compounds, which indicates that the hydrazide and the naphthalene-ol groups play a vital role in the binding of the compounds with the essential residues (i.e., Glu277 and Gln279) of the α-glucosidase enzyme.


Assuntos
Diabetes Mellitus , Inibidores de Glicosídeo Hidrolases , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Hidrazonas/farmacologia , Hidrazonas/química , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Diabetes Mellitus/tratamento farmacológico
3.
J Biochem Mol Toxicol ; 37(1): e23222, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36106371

RESUMO

Chloroxine (5,7-dichloro-8-hydroxyquinoline) is a molecule utilized in some shampoos for the therapy of seborrheic dermatitis of the scalp and dandruff. In this study, we investigated the inhibition effects of 5,7-dichloro-8-hydroxyquinoline and methyl 3,4,5-trihydroxybenzoate compounds on the 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA Reductase) and urease enzymes. We have obtained results for the HMG-CoA Reductase and urease enzymes at the micromolar level. In our study, inhibition result of 5,7-dichloro-8-hydroxyquinoline and Methyl 3,4,5-trihydroxybenzoate on HMG-CoA reductase showed lower values 2.28 ± 0.78 and 33.25 ± 5.04 µg/ml, respectively. Additionally, inhibition result of 5,7-dichloro-8-hydroxyquinoline and methyl 3,4,5-trihydroxybenzoate on urease showed lower values 6.18 ± 1.38 and 8.51 ± 1.35 µg/ml, respectively. Molecular docking calculations were made for their biological activities were compared. In the present work, the structures of the related compounds (1 and 2) were drawn using Gaussian 09 software and done geometry optimization at DFT/B3LYP/6-31G* basis set with aforementioned program. Cytotoxicity potential of these compounds against human lung cancer demonstrated that these compounds had good cytotoxic effects. Both compounds significantly decreased lung cell viability from low doses. In addition, 100 µM dose of all compounds caused significant reductions in lung cell viability. In general, we can say that of the two tested compounds, 5,7-dichloro-8-hydroxyquinoline and methyl 3,4,5-trihydroxybenzoate have cytotoxic effects in all cell types, and this effect is particularly strong in lung cells. Activities were performed at concentrations of 10, 20, 50, 70, and 100 µl and we achieved good results. Lung cell viability (%) value was better at 100 µl concentration and IC50 of them were 54.28 and 48.05 µM.


Assuntos
Antineoplásicos , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Pulmonares , Humanos , Simulação de Acoplamento Molecular , Urease , Hidroximetilglutaril-CoA Redutases/metabolismo , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Oxiquinolina , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia
4.
Bioorg Chem ; 139: 106739, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478545

RESUMO

Type-2 Diabetes Mellitus (T2DM) is one of the most common metabolic disorders in the world and over the past three decades its incidence has increased drastically. α-Glucosidase inhibitors are used to control the hyperglycemic affect of T2DM. Herein, we report the synthesis, α-glucosidase inhibition, structure activity relationship, pharmacokinetics and docking analysis of various novel chromone based thiosemicarbazones 3(a-r). The derivatives displayed potent activity against α-glucosidase with IC50 in range of 0.11 ± 0.01-79.37 ± 0.71 µM. Among all the synthesized compounds, 3a (IC50 = 0.17 ± 0.026 µM), 3 g (IC50 = 0.11 ± 0.01 µM), 3n (IC50 = 0.55 ± 0.02 µM), and 3p (IC50 = 0.43 ± 0.025 µM) displayed higher inhibitory activity as compared to the standard, acarbose. Moreover, we have developed a statistically significant 2D-QSAR model (R2tr:0.9693; F: 50.4647 and Q2LOO:0.9190), which can be used in future to further design potent thiosemicarbazones as inhibitors of α-glucosidase.


Assuntos
Diabetes Mellitus Tipo 2 , Tiossemicarbazonas , Humanos , Inibidores de Glicosídeo Hidrolases/química , Tiossemicarbazonas/farmacologia , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estrutura Molecular
5.
Biotechnol Appl Biochem ; 70(2): 730-745, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35933706

RESUMO

In this study, we worked on anticolon cancer effects and anti-Alzheimer's disease with molecular docking studies. Hamamelitannin, flavokawain A, and triacetyl resveratrol compounds showed good inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. The inhibition effects of flavokawain A, hamamelitannin, and triacetyl resveratrol on AChE and BuChE enzymes were determined spectrophotometrically conforming to Ellman. IC50 values of these enzymes were ranging between 0.95 ± 0.12 and 93.27 ± 8.14 nM for AChE and 5.71 ± 0.77 and 52.10 ± 8.41 nM for BuChE. The inhibitory activities of some chemical compounds such as flavokawain A, hamamelitannin, and triacetyl resveratrol were assessed by performing the molecular docking study in the presence of AChE and BuChE. Also, the features of the ligand-enzyme complex had value of -7.722 kcal/mol for flavokawain A against AChE and -5.530 kcal/mol against BuChE. The molecular docking calculations indicated the probable interactions and their characteristics at an atomic level. Due to the outcomes gained from docking, the affinity of the chemical compounds to the enzymes was considerable. In vitro cell viabilities of flavokawain A, hamamelitannin, and triacetyl resveratrol with various concentrations on SW620, DLD-1, HT29, HCT8, and HCT116 were investigated by MTT assay with Doxorubicin as the control compound.


Assuntos
Doença de Alzheimer , Neoplasias , Humanos , Butirilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Resveratrol/farmacologia , Estrutura Molecular , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade
6.
Clin Exp Pharmacol Physiol ; 49(2): 275-290, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34570918

RESUMO

This study evaluated the protective effect of resolvin D1 (RVD1) against cadmium chloride (CdCl2 )-induced hippocampal damage and memory loss in rats and investigated if such protection is mediated by modulating the PTEN/PI3K/Akt/mTOR pathway. Adult male Wistar rats (n = 18/group) were divided as control, control + RVD1, CdCl2 , CdCl2  + RVD1 and CdCl2  + RVD1 + bpV(pic), a PTEN inhibitor. All treatments were conducted for 4 weeks. Resolvin D1 improved the memory function as measured by Morris water maze (MWM), preserved the structure of CA1 area of the hippocampus, and increased hippocampal levels of RVD1 in the CdCl2 -treated rats. Resolvin D1 also suppressed the generation of reactive oxygen species (ROS), tumour necrosis factor-α and interleukine-6 (IL-6), inhibited nuclear factor κB (NF-κB) p65, stimulated levels of glutathione (GSH), manganese superoxide dismutase (MnSOD), and Bcl2 but reduced the expression of Bax and cleaved caspase 3 in hippocampi of CdCl2 -treated rats. Concomitantly, it stimulated levels and activity of PTEN and reduced the phosphorylation (activation) of PI3K, Akt and mTOR in hippocampi of CdCl2 -treated rats. In conclusion, RVD1 attenuates CdCl2 -induced memory loss and hippocampal damage in rats mainly by activating PTEN-induced suppression of PI3K/Akt/mTOR, an effect that seems secondary to its' anti-oxidant and anti-inflammatory potential.


Assuntos
Cloreto de Cádmio , Proteínas Proto-Oncogênicas c-akt , Animais , Cloreto de Cádmio/metabolismo , Cloreto de Cádmio/toxicidade , Ácidos Docosa-Hexaenoicos/farmacologia , Hipocampo , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
7.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164093

RESUMO

Cosmetic-containing herbals are a cosmetic that has or is claimed to have medicinal properties, with bioactive ingredients purported to have medical benefits. There are no legal requirements to prove that these products live up to their claims. The name is a combination of "cosmetics" and "pharmaceuticals". "Nutricosmetics" are related dietary supplements or food or beverage products with additives that are marketed as having medical benefits that affect appearance. Cosmetic-containing herbals are topical cosmetic-pharmaceutical hybrids intended to enhance the health and beauty of the skin. Cosmetic-containing herbals improve appearance by delivering essential nutrients to the skin. Several herbal products, such as cosmetic-containing herbals, are available. The present review highlights the use of natural products in cosmetic-containing herbals, as natural products have many curative effects as well as healing effects on skin and hair growth with minimal to no side effects. A brief description is given on such plants, their used parts, active ingredients, and the therapeutic properties associated with them. Mainly, the utilization of phytoconstituents as cosmetic-containing herbals in the care of skin and hair, such as dryness of skin, acne, eczema, inflammation of the skin, aging, hair growth, and dandruff, along with natural ingredients, such as for hair colorant, are explained in detail in the present review.


Assuntos
Produtos Biológicos/uso terapêutico , Cosmecêuticos/uso terapêutico , Cosméticos/uso terapêutico , Envelhecimento da Pele/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Pele/metabolismo , Humanos
8.
Cancer Invest ; 39(9): 777-782, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34344244

RESUMO

OBJECTIVE: Multiple myeloma is an incurable hematological malignancy. Currently, the use of proteasome inhibitors could be superior to chemotherapy-based regimen in the treatment of this disease. However, resistance to bortezomib combination therapy still occurs in some patients. So, this research work aims to assess CD69 and CD56 expression in these cases and their relation to the response to therapy. MATERIALS AND METHODS: Immunophenotyping by 4-color multi-parameter flow cytometry was carried out on 98 multiple myeloma cases. Clonal plasma cells were gated by co-expression of CD38 with CD138 with low SSC, negative or dim CD45. RESULTS: Double negative CD69 and CD56 (47.9%) multiple myeloma cases were associated with high serum ß2 microglobulin, creatinine, calcium and low serum albumin. There was also a significant correlation between the absence of these markers with osteolytic lesions and unfavorable cytogenetic t (4;14) (p < 0.001). Moreover, there was a highly significant correlation between CD69- and CD56- with non-response to bortezomib combination therapy in multiple myeloma patients (p < 0.0001). Regression analysis for the prediction of non- response to treatment in these cases using different prognostic indicators revealed that high serum ß2 microglobulin, unfavorable cytogenetic, advanced stage, and low expression of CD69 and CD56 were poor predictors of non-response. CONCLUSION: CD69 in association with CD56 could be an independent prognostic factor in multiple myeloma cases. It could be used in the routine laboratory assessment for refining stratification and timely therapeutic decision for highly cost therapy in developing countries.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antineoplásicos/uso terapêutico , Antígeno CD56/metabolismo , Lectinas Tipo C/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Idoso , Bortezomib/administração & dosagem , Feminino , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem/métodos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/metabolismo , Prognóstico
9.
Saudi Pharm J ; 29(1): 27-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33603537

RESUMO

This study examined if the Fisetin against streptozotocin-induced diabetic cardiomyopathy (DC) in rats involves regulating cardiac metabolism and suppressing protein kinase R (PKR). Male rats were divided (12/groups) as control (non-diabetic), control + Fisetin, T1DM, and T1DM + Fisetin. Fisetin was administered orally at a final dose of 2.5 mg/kg for 12 weeks. In T1DM1-induced rats, Fisetin prevented heart and final body weights loss, lowered circulatory levels troponin I and creatinine kinase-MB (CK-MB), increased fasting insulin levels, and improved ventricular systolic and diastolic functions. It also preserved the structure of the cardiomyocytes and reduced oxidative stress, fibrosis, protein levels of transforming growth factor-ß1 (TGF-ß1), collagenase 1A, caspase-3, and the activation of JNK, p53, and p38 MAPK. In the control and diabetic rats, Fisetin attenuated fasting hyperglycaemia, the increases in glucose levels after the oral and insulin tolerance tests, and HOMA-IR. It also increased cardiac glucose oxidation by increasing the activity of private dehydrogenase (PDH), phosphofructokinase (PFK), protein levels of PPAR-α and suppressed cardiac inflammation by inhibiting NF-κB. These effects were associated with a reduction in the activity of PKR and subsequent increase in the activity of eeukaryotic initiation factor 2 (eIF2) with a parallel increase in protein levels of p67, a cellular inhibitor of PKR. In cultured cardiomyocytes, Fisetin, prevented high glucose (HG)-induced activation of PKR and reduction in p67, in a dose-dependent manner. However, the effect of Fisetin on PKR was diminished in LG and HG-treated cardiomyocytes with p67-siRNA. In conclusion, Fisetin protects against DC in rats by improving cardiac glucose metabolism and suppressing PKR.

10.
Clin Exp Pharmacol Physiol ; 47(9): 1611-1621, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32415699

RESUMO

This study investigated the effect of ellagic acid (EA) on SKOV-3 cell growth and invasiveness and tested if the underlying mechanism involves modulating autophagy. Cells were treated with EA in the presence or absence of chloroquine (CQ), an autophagy inhibitor, compound C (CC), an AMPK inhibitor, or an insulin-like growth factor-1 (IGF-1), a PI3K/Akt activator. EA, at an IC50 of 36.6 µmol/L, inhibited cell proliferation, migration, and invasion and induced cell apoptosis in SKOV-3 cells. These events were prevented by CQ. Also, EA increased levels of Beclin-1, ATG-5, LC3I/II, Bax, cleaved caspase-3/8 and reduced those of p62 and Bcl-2 in these cancer cells. Mechanistically, EA decreased levels of p-S6K1 (Thr389 ) and 4EBP-1 (Thr37/46 ), two downstream targets of mTORC1, and p-Akt (Thr308 ) but increased levels of AMPK (Thr172 ) and p-raptor (Ser792 ), a natural inhibitor of mTORC1. CC or IGF-1 alone partially prevented the effect of EA on cell survival, cell invasions, and levels of LDH, Beclin-1, and cleaved caspase-3. In conclusion, EA can inhibit SKOV-3 growth, migration, and invasion by activating cytotoxic autophagy mediated by inhibition of mTORC1 and Akt and activation of AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Ácido Elágico/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Invasividade Neoplásica , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
11.
Andrologia ; 52(11): e13823, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32966695

RESUMO

The aim of the current study was to investigate antioxidant, anti-inflammatory and anti-apoptotic effects of Origanum vulgare on finasteride-induced oxidative injury in mouse testis and sperm parameters. Thirty BALB/c mice were divided into 5 groups: negative control, received 0.5 ml/day distilled water; positive control, received 25 mg/kg finasteride orally; and three groups received 100, 200 and 400 mg/kg/day O. vulgare extract plus 25 mg kg-1  day-1 finasteride for 35 days. At day 36, serum luteinising hormone, follicle-stimulating hormone and testosterone, inflammatory cytokines (IL-6, TNF-α, IL-1ß), glutathione peroxidase, superoxide dismutase and nitric oxide levels were assessed. Also, apoptotic changes investigated through genes expression and immunohistochemical staining. Finasteride in 35 days resulted in significant destructive alterations in the testis architecture, suppressed antioxidant enzymes and increased lipid peroxidation. The expression of Bcl-2 was down-regulated, whereas p53 and caspase-3 were up-regulated. Origanum vulgare improved the serum level of hormones and restored the antioxidant defence. 200 and 400 mg/kg/day of O. vulgare alleviated the testis structure and sperm parameters, up-regulated the anti-apoptotic gene Bcl-2 and down-regulated the p53, caspase-3 genes in treated groups. The findings indicate that O. vulgare extract improved function and structure of testis tissue against finasteride-induced testicular toxicity.


Assuntos
Finasterida , Origanum , Extratos Vegetais , Animais , Antioxidantes , Apoptose , Finasterida/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Extratos Vegetais/farmacologia , Folhas de Planta , Espermatozoides , Testículo , Testosterona
12.
Am J Pathol ; 184(1): 296-303, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269837

RESUMO

Spirulina (SP) (Arthrospira platensis; previously Spirulina platensis) is a filamentous blue-green microalga (cyanobacterium) with potent dietary phytoantioxidant and anticancerous properties. We investigated the chemopreventive effect of SP against 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat breast carcinogenesis, and further studied its underlying mechanisms of action in vitro. Remarkably, SP cleared DMBA-induced rat mammary tumors, which was clearly confirmed by morphological and histological methods. SP supplementation reduced the incidence of breast tumors from 87% to 13%. At the molecular level, immunohistochemical analysis revealed that SP supplementation reduced expression of both Ki-67 and estrogen α. More interestingly, molecular analysis in the in vitro experiments indicated that SP treatment inhibited cell proliferation by 24 hours, which was accompanied by increased p53 expression, followed by increased expression of its downstream target gene, Cdkn1a (alias p21 or p21(Waf1/Cip1)). In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48 hours after SP treatment. To our knowledge, this is the first report of in vivo chemopreventive effect of SP against DMBA-induced breast carcinogenesis in rat, supporting its potential use in chemoprevention of cancer.


Assuntos
Quimioprevenção/métodos , Neoplasias Mamárias Experimentais/prevenção & controle , Spirulina , Animais , Western Blotting , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Células MCF-7 , Ratos , Ratos Sprague-Dawley
13.
Int J Biol Macromol ; 273(Pt 1): 132771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823752

RESUMO

In this study, biochar (BC) from Delonix regia pods peel and gum from Delonix regia seed (SG) were prepared, and also biochar/chitosan composite (BCS) and biochar/Delonix regia seed gum/chitosan composite (BCGS) were fabricated for the efficient adsorption of phenol. Various characterization tools such as SEM, TEM, ATR-FTIR, TGA, zeta potential, and textural investigation were studied to examine the features of the synthetized adsorbents, confirming their positive construction. It was fully studied how necessary factors, comprising pH, dose of adsorbent, contact shaking time, initial phenol concentration, and temperature influenced adsorption behavior. An obvious rise of the adsorption capacity from 60.16 to 165.20 mg/g was achieved by the modification of biochar with Delonix regia seed gum and chitosan under ideal circumstances of 2 h contact duration, pH 7, 15 °C, and a dose of 2.0 g/L. The phenol adsorption was well applied by Langmuir, Temkin, Dubinin-Radushkevich, and Sips isotherms, in addition to nonlinear pseudo-second-order kinetic model. Furthermore, the physisorption, endothermic, and spontaneous process was illustrated by thermodynamic investigation. Additionally, the fabricated adsorbents could be effectively used and regenerated without main losses of only 7.5, 4.6, and 4.0 % for BC, BCS, and BCGS, respectively in the removal percentage after seven cycles of application.


Assuntos
Carvão Vegetal , Quitosana , Fenol , Gomas Vegetais , Sementes , Quitosana/química , Carvão Vegetal/química , Adsorção , Sementes/química , Concentração de Íons de Hidrogênio , Cinética , Fenol/química , Gomas Vegetais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Temperatura , Purificação da Água/métodos , Água/química , Termodinâmica
14.
J Oleo Sci ; 73(2): 187-199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311409

RESUMO

One of the main goals of medicinal chemistry in recent years has been the development of new enzyme inhibitors and anti-cancer medicines. The isokaempferide' ability to inhibit the enzymes urease, elastase, and collagenase were also studied. The results showed that isokaempferide was the most effective compound against the assigned enzymes, with IC 50 values of 23.05 µM for elastase, 12.83 µM for urease, and 33.62 µM for collagenase respectively. It should be emphasized that natural compound was more effective at inhibiting some enzymes. Additionally, the compound was tested for their anti-cancer properties using colon, lung, breast cancer cell lines. The chemical activities of isokaempferide against urease, collagenase, and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compound were evaluated against lung cancer cells such as SPC-A-1, SK-LU-1, 95D, breast cancer cells like MCF7, Hs 578Bst, Hs 319.T, and UACC-3133 cell lines, and colon cancer cell lines like CL40, SW1417, LS1034, and SW480. The chemical activities of isokaempferide against some of the expressed surface receptor proteins (EGFR, estrogen receptor, CD47, progesterone receptor, folate receptor, CD44, HER2, CD155, CXCR4, CD97, and endothelin receptor) in the mentioned cell lines were assessed using the molecular docking calculations. The results showed the probable interactions and their characteristics at an atomic level. The docking scores revealed that isokaempferide has a strong binding affinity to the enzymes and proteins. In addition, the compound formed powerful contact with the enzymes and receptors. Thus, isokaempferide could be potential inhibitor for enzymes and cancer cells.


Assuntos
Neoplasias da Mama , Flavonoides , Urease , Humanos , Feminino , Urease/metabolismo , Simulação de Acoplamento Molecular , Células MCF-7 , Elastase Pancreática/metabolismo , Colagenases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Relação Estrutura-Atividade
15.
Mol Biotechnol ; 66(3): 554-566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37280483

RESUMO

A lot of research has been done on using natural items as diabetes treatment. The molecular docking study was conducted to evaluate the inhibitory activities of urolithin A against α-amylase, α-glucosidase, and aldose reductase. The molecular docking calculations indicated the probable interactions and the characteristics of these contacts at an atomic level. The results of the docking calculations showed the docking score of urolithin A against α-amylase was -5.169 kcal/mol. This value for α-glucosidase and aldose reductase was -3.657 kcal/mol and -7.635 kcal/mol, respectively. In general, the outcomes of the docking calculations revealed that urolithin A can construct several hydrogen bonds and hydrophobic contacts with the assessed enzymes and reduces their activities considerably. The properties of urolithin against common human breast cancer cell lines, i.e., SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE were evaluated. The IC50 of the urolithin was 400, 443, 392, 418, 397, 530, 566 and 551 against SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE, respectively. After doing the clinical trial studies, the recent molecule may be used as an anti-breast cancer supplement in humans. IC50 values of urolithin A on α-amylase, α-glucosidase, and aldose reductase enzymes were obtained at 16.14, 1.06 and 98.73 µM, respectively.


Assuntos
Aldeído Redutase , Neoplasias da Mama , Humanos , Feminino , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , alfa-Amilases/química , alfa-Amilases/metabolismo , Neoplasias da Mama/tratamento farmacológico
16.
Int J Biol Macromol ; 266(Pt 2): 131068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531526

RESUMO

An extensive range of new biologically active morpholine based thiosemicarbazones derivatives 3a-r were synthesized, characterized by spectral techniques and evaluated as inhibitors of ENPP isozymes. Most of the novel thiosemicarbazones exhibit potent inhibition towards NPP1 and NPP3 isozymes. Compound 3 h was potent inhibitor of NPP1 with IC50 value of 0.55 ±â€¯0.02. However, the most powerful inhibitor of NPP3 was 3e with an IC50 value of 0.24 ±â€¯0.02. Furthermore, Lineweaver-Burk plot for compound 3 h against NPP1 and for compound 3e against NPP3 was devised through enzymes kinetics studies. Molecular docking and in silico studies was also done for analysis of interaction pattern of all newly synthesized compounds. The results were further validated by molecular dynamic (MD) simulation where the stability of conformational transformation of the best protein-ligand complex (3e) were justified on the basis of RMSD and RMSF analysis.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Morfolinas , Diester Fosfórico Hidrolases , Pirofosfatases , Tiossemicarbazonas , Morfolinas/química , Morfolinas/farmacologia , Morfolinas/síntese química , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/química , Pirofosfatases/metabolismo , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/síntese química , Humanos , Cinética , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/síntese química , Simulação por Computador , Relação Estrutura-Atividade , Ligantes
17.
RSC Adv ; 14(6): 4221-4229, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38292270

RESUMO

In the current study, three novel 1,4-phenylenediamine-based chromophores (3a-3c) were synthesized and characterized and then their nonlinear optical (NLO) characteristics were explored theoretically. The characterization was done by spectroscopic analysis, i.e. FT-IR, UV-Visible, and NMR spectroscopy, and elemental analysis. Notably, these chromophores exhibited UV-Visible absorption within the range of 378.635-384.757 nm in acetonitrile solvent. Additionally, the FMO findings for 3a-3c revealed the narrowest band gap (4.129 eV) for 3c. The GRPs for these chromophores were derived from HOMO-LUMO energy values, which showed correspondence with FMO results by depicting a minimum hardness (2.065 eV) for 3c. Among these compounds, 3c displayed the highest nonlinear behavior with maximum µtot, ßtot and γtot values of 4.79 D, 8.00 × 10-30 and 8.13 × 10-34 a.u., respectively. Our findings disclosed that the synthesized 1,4-phenylenediamine chromophores may be considered promising candidates for nonlinear optical materials, showing potential applications in the realm of optoelectronic devices.

18.
Heliyon ; 10(5): e27164, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468941

RESUMO

Currently, doxorubicin (DOX) is one of the medications commonly used in chemotherapy to treat different types of tumors.Nonetheless, despite being effective in multiple tumors, yet its use is limited owing to its cytotoxic effects, the therapeutic use of DOX has been limited. This work aimed to explore whether curcumin (CMN) can prevents DOX-induced cardiotoxicity in rats. Four groups of rats were created, with the first functioning as a control, while the second group received CMN. DOX alone was administered to the third group, whereas CMN and DOX were administered to the fourth group. Lipid peroxidation assessed as Malondialdehyde (MDA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), oxidative stress markers as catalase (CAT), superoxide dismutase (SOD), and inflammatory markers as tumor necrosis factor-alpha (TNF-α) in heart homogenates, each one was assessed. Heart specimens was investigated histologically and ultrastructurally. Increased, AST, and ALT serum levels, increased MDA levels, decreased SOD and CAT levels, and increased TNF-α concentrations in heart homogenates were all signs of DOX-induced myocardial injury. Histological and ultrastructural examinations revealed vacuoles and larger, swollen mitochondria in the cytoplasm. Furthermore, DOX caused significant changes in the myocardium, most notably nuclei disintegration, myofibrillar loss, and myocyte vacuolization. Using CMN with DOX reduced the harmful consequences of DOX on the myocardium by returning the increased AST and ALT levels to their original levels as compared to the control and reducing them. In cardiac tissue, CMN significantly increased the concentrations of SOD and CAT and significantly decreased the concentrations of MDA and TNF-α. Biochemical and histological studies have demonstrated that CMN has a heart-protective effect that might be related to its antioxidant and anti-inflammatory capabilities.

19.
Eur J Pharm Sci ; : 106849, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992452

RESUMO

Doxorubicin (DOX) is an anthracycline chemotherapy drug widely employed in the treatment of various cancers, known for its potent antineoplastic properties but often associated with dose-dependent cardiotoxicity, limiting its clinical use. This review explores the complex molecular details that determine the heart-protective effectiveness of carvedilol in relation to cardiotoxicity caused by DOX. The harmful effects of DOX on heart cells could include oxidative stress, DNA damage, iron imbalance, disruption of autophagy, calcium imbalance, apoptosis, dysregulation of topoisomerase 2-beta, arrhythmogenicity, and inflammatory responses. This review carefully reveals how carvedilol serves as a strong protective mechanism, strategically reducing each aspect of cardiac damage caused by DOX. Carvedilol's antioxidant capabilities involve neutralizing free radicals and adjusting crucial antioxidant enzymes. It skillfully manages iron balance, controls autophagy, and restores the calcium balance essential for cellular stability. Moreover, the anti-apoptotic effects of carvedilol are outlined through the adjustment of Bcl-2 family proteins and activation of the Akt signaling pathway. The medication also controls topoisomerase 2-beta and reduces the renin-angiotensin-aldosterone system, together offering a thorough defense against cardiotoxicity induced by DOX. These findings not only provide detailed understanding into the molecular mechanisms that coordinate heart protection by carvedilol but also offer considerable potential for the creation of targeted treatment strategies intended to relieve cardiotoxicity caused by chemotherapy.

20.
Biomed Pharmacother ; 170: 116083, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163395

RESUMO

As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.


Assuntos
Nanopartículas Metálicas , Extratos Vegetais , Humanos , Extratos Vegetais/química , Química Verde , Plantas , Medicina Tradicional , Nanopartículas Metálicas/química , Atenção à Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA