Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-20242354

RESUMO

ImportanceCOVID-19 is a heterogenous disease most frequently causing respiratory tract infection but in its severe forms, respiratory failure and multiple organ dysfunction syndrome may occur, resembling sepsis. The prevalence of viral sepsis among COVID-19 patients is still unclear. ObjectiveWe aimed to describe this in a systematic review. Data sourcesMEDLINE(PubMed), Cochrane and Google Scholar databases were searched for studies reporting on patients hospitalized with confirmed COVID-19, diagnosed with sepsis or infection-related organ dysfunctions or receiving organ replacement therapy. Study selectionEligible were full-text English articles of randomized and non-randomized clinical trials and observational studies reporting on patients with confirmed COVID-19, who are diagnosed with sepsis or have infection-related organ dysfunctions. Systematic reviews, editorials, conference abstracts, animal studies, case reports, articles neither in English nor full-text, and studies with fewer than 30 participants were excluded. Data extraction and synthesisAll eligible studies were included in a narrative synthesis of results and after reviewing all included studies a meta-analysis was conducted. Separate sensitivity analyses were conducted per adult vs pediatric populations and per Intensive Care Unit (ICU) vs non-ICU populations. Main outcomes and measuresPrimary endpoint was the prevalence of sepsis using Sepsis-3 criteria among patients with COVID-19 and among secondary, new onset of infection-related organ dysfunction. Outcomes were expressed as proportions with respective 95% confidence interval (CI). ResultsOf 1,903 articles, 104 were analyzed. The prevalence of sepsis in COVID-19 was 39.9% (95% CI, 35.9-44.1; I2, 99%). In sensitivity analysis, sepsis was present in 25.1% (95% CI, 21.8-28.9; I2 99%) of adult patients hospitalized in non-Intensive-Care-Unit (ICU) wards (40 studies) and in 83.8 (95% CI, 78.1-88.2; I2,91%) of adult patients hospitalized in the ICU (31 studies). Sepsis in children hospitalized with COVID-19 was as high as 7.8% (95% CI, 0.4-64.9; I2, 97%). Acute Respiratory Distress Syndrome was the most common organ dysfunction in adult patients in non-ICU (27.6; 95% CI, 21.6-34.5; I2, 99%) and ICU (88.3%; 95% CI, 79.7-93.5; I2, 97%) Conclusions and relevanceDespite the high heterogeneity in reported results, sepsis frequently complicates COVID-19 among hospitalized patients and is significantly higher among those in the ICU. PROSPERO registration number: CRD42020202018. No funding. KEY POINTSO_ST_ABSQuestionC_ST_ABSWhat is the prevalence of viral sepsis by Sepsis-3 definition among hospitalized patients with COVID-19? FindingsIn this systematic review and meta-analysis, we systematically reviewed published literature for evidence of organ failure in COVID-19, to estimate the prevalence of viral sepsis in this setting, by means of SOFA score calculation. The prevalence of sepsis in COVID-19 was 39.9% (95% CI, 35.9-44.1; I2, 99%). MeaningThis is the first study to address the burden of viral sepsis in hospitalized patients with COVID-19, a highly heterogenous infection ranging from asymptomatic cases to severe disease leading to death, as reflected in the high heterogeneity of this study.

2.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-21255190

RESUMO

BackgroundAcute respiratory distress syndrome (ARDS) in COVID-19 has been associated with dysregulated immune responses leading to catastrophic inflammation. The activation pathways remain to be fully elucidated. We investigated the ability of circulating to induce dysregulated immune responses. Materials & MethodsCalprotectin and high mobility group box 1 (HMGB1) were associated with ARDS in 60 COVID-19 patients. In a second cohort of 40 COVID-19 patients calprotectin at hospital admission was associated with serum levels of soluble urokinase plasminogen activator receptor (suPAR). A COVID-19 animal model was developed by intravenous injection of plasma from healthy volunteers or patients with COVID-19 ARDS into C57/BL6 mice once daily for 3 consecutive days. In separate experiments, mice were treated with a) the IL-1 receptor antagonist Anakinra or vehicle and b) Flo1-2a anti-murine anti-IL-1 monoclonal antibody or the specific anti-human IL-1 antibody XB2001, or isotype controls. Mice were sacrificed on day 4. Cytokines and myeloperoxidase (MPO) in tissues were measured. ResultsCalprotectin, but not HMGB1, was elevated ARDS. Higher suPAR readouts indicated higher calprotectin levels. CHallenge of mice with COVID-19 plasma led to inflammatory reactions in murine lung and intestines as evidenced by increased levels of TNF, IL-6, IFN{gamma} and MPO. Anakinra treatment brought these levels down. Similar decrease was found in mice treated with Flo1-2a but not with XB2001. ConclusionCirculating alarmins, specifically calprotectin, of critically ill COVID-19 patients induces tissue-specific inflammatory responses through an IL-1 mediated mechanism. This could be attenuated through inhibition of IL-1 receptor or specific inhibition of IL-1.

3.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-20131326

RESUMO

COVID-19 is a pandemic that shares certain clinical characteristics with other acute viral infections. Here, we studied the whole-blood transcriptomic host response to SARS-CoV-2 and compared it with other viral infections to understand similarities and differences in host response. Using RNAseq we profiled peripheral blood from 24 healthy controls and 62 prospectively enrolled patients with community-acquired lower respiratory tract infection by SARS-Cov-2 within the first 24 hours of hospital admission. We also compiled and curated 23 independent studies that profiled 1,855 blood samples from patients with one of six viruses (influenza, RSV, HRV, ebola, Dengue, and SARS-CoV-1). We show gene expression changes in peripheral blood in patients with COVID-19 versus healthy controls are highly correlated with changes in response to other viral infections (r=0.74, p<0.001). However, two genes, ACO1 and ATL3, show significantly opposite changes between conditions. Pathway analysis in patients with COVID-19 or other viral infections versus healthy controls identified similar pathways including neutrophil activation, innate immune response, immune response to viral infection, and cytokine production for over-expressed genes. Conversely, for under-expressed genes, pathways indicated repression of lymphocyte differentiation and T cell activation. When comparing transcriptome profiles of patients with COVID-19 directly with those with other viral infections, we found 114 and 302 genes were over- or under-expressed, respectively, during COVID-19. Pathways analysis did not identify any significant pathways in these genes, suggesting novel responses to further study. Statistical deconvolution using immunoStates found that M1 macrophages, plasmacytoid dendritic cells, CD14+ monocytes, CD4+ T cells, and total B cells showed change consistently in the same direction across all viral infections including COVID-19. Those that increased in COVID-19 but decreased in non-COVID-19 viral infections were CD56bright NK cells, M2 macrophages, and total NK cells. The concordant and discordant responses mapped out here provide a window to explore the pathophysiology of COVID-19 versus other viral infections and show clear differences in signaling pathways and cellularity as part of the host response to SARS-CoV-2.

4.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-21250182

RESUMO

RationaleMacrophage activation syndrome (MAS) and complex immune dysregulation (CID) often underlie acute respiratory distress (ARDS) in COVID-19. ObjectiveTo investigate the outcome of personalized immunotherapy in critical COVID-19. MethodsIn this open-label prospective trial, 102 patients with SOFA (sequential organ failure assessment) score [≥]2 or ARDS by SARS-CoV-2 were screened for MAS (ferritin more than 4420 ng/ml) and CID (ferritin [≤]4420 ng/ml and low expression of HLA-DR on CD14-monocytes). Patients with MAS and CID with increased aminotransferases were assigned to intravenous anakinra; those with CID and normal aminotransferases to tocilizumab. The primary outcome was at least 25% decrease of SOFA score and/or 50% increase of respiratory ratio by day 8; 28-day mortality, change of SOFA score by day 28; serum biomarkers and cytokine production by mononuclear cells were secondary endpoints. Measurements and Main ResultsThe primary study endpoint was met in 58.3% of anakinra-treated patients and in 33.3% of tocilizumab-treated patients (odds ratio 3.11; 95% CIs 1.29-7.73; P: 0.011). No differences were found in mortality and in SOFA score changes. By day 4, ferritin was decreased among anakinra-treated patients; interleukin (IL)-6, soluble urokinase plasminogen activator receptor (suPAR) and the expression of HLA-DR were increased among tocilizumab-treated patients. Anakinra increased capacity of mononuclear cells to produce IL-6. Survivors by day 28 who received anakinra were distributed to scales of the WHO clinical progression of lower severity. Greater incidence of secondary infections was found with tocilizumab treatment. ConclusionsBiomarkers may guide favourable anakinra responses in critically ill patients with COVID-19. Trial RegistrationClinicalTrials.gov, NCT04339712

5.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-20217455

RESUMO

IntroductionThe management of pneumonia caused by SARS-CoV-2 should rely on early recognition of the risk for progression to severe respiratory failure (SRF) and its prevention. We investigated if early suPAR (soluble urokinase plasminogen activator receptor)-guided anakinra treatment could prevent COVID-19-assocated SRF. MethodsIn this open-label prospective trial, 130 patients admitted with SARS-CoV-2 pneumonia SARS-CoV-2 and suPAR levels [≥]6 g/l were assigned to subcutaneous anakinra 100mg once daily for 10 days. The primary outcome was the incidence of SRF at day 14. Secondary outcomes were 30-day mortality, changes in sequential organ failure assessment (SOFA) score, of cytokine-stimulation pattern and of circulating inflammatory mediators. Equal number of propensity score-matched comparators for comorbidities, severity on admission and standard-of care (SOC) were studied. ResultsThe incidence of SRF was 22.3% (95% CI, 16.0-30.2%) among anakinra-treated patients and 59.2% (95% CI, 50.6-67.3%; P: 4.6 x 10-8) among SOC comparators (hazard ratio, 0.30; 95%CI, 0.20-0.46). 30-day mortality was 11.5% (95% CI, 7.1-18.2%) and 22.3% (95% CI, 16.0-30.2%) respectively (hazard ratio 0.49; 95% CI 0.25-0.97%; P: 0.041). Anakinra treatment was associated with decrease in SOFA score and in circulating interleukin (IL)-6, sCD163 and sIL2-R; the serum IL-10/IL-6 ratio on day 7 was inversely associated with the change in SOFA score. Duration of stay at the intensive care unit and at hospital was shortened compared to the SOC group; the cost of hospitalization was decreased. ConclusionsEarly suPAR-guided anakinra treatment is associated with decrease of the risk for SRF and restoration of the pro- /anti-inflammatory balance. Trial RegistrationClinicalTrials.gov, NCT04357366

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA