Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 15(1): 4506, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24423848

RESUMO

The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer-controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC-shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10 × 10 cm2, 3.4 × 3.4 cm2, and 2 × 2 cm2) with respect to a water phantom at source-to-surface distance (SSD) = 94 cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in-phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1 mm based on percentage depth doses (PDDs) and off-axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in-house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC-shaped field sizes with appropriate jaw settings. In the next stage, patient-specific verification with a full MERT plan should be performed.


Assuntos
Elétrons/uso terapêutico , Registro da Relação Maxilomandibular/instrumentação , Método de Monte Carlo , Radiometria/métodos , Radioterapia de Alta Energia/instrumentação , Radioterapia de Intensidade Modulada , Simulação por Computador , Desenho de Equipamento , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Materials (Basel) ; 17(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203324

RESUMO

The precursor nanoparticles of nickel hydroxide (Ni(OH)2) and nickel oxide (NiO) were successfully converted into the latter by the reaction of nickel chloride with hydrazine at ambient temperature. (TGA) and (DSC) were adapted for annealing the precursor products at different annealing temperatures (210, 285, 350, 390, 425, and 450 °C). XRD, TEM, and UV-VIS absorption spectroscopy were used to characterize the products. Both the band edge and energy gap values decrease with increasing annealing temperatures. Hysteresis loops are visible in the M-H curves of annealed (350 °C and 390 °C) precursor NiO NPs, indicating the presence of ferromagnetic Ni domains. However, NiO nanoparticles annealed at higher temperatures (425 °C and 450 °C) had a straight M-H curve, indicating paramagnetic properties. NiO NPs were used to study photocatalysis in the degradation of the MB dye. As annealing temperatures increased, the catalyst caused the degradation of MB. The sample that was annealed at 450 °C, however, exhibits the maximum photocatalytic activity, reaching up to 72.4% after being exposed to visible light. In other words, it was discovered that as the catalyst's annealing temperature rose, so did the rate of MB's photocatalytic degradation.

3.
Phys Med ; 21(2): 55-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-18348845

RESUMO

A simple aralytical approach to model extrafocal radiation (EFR) and monitor chamber backscatter (MBS)-and consequently collimator scattar factor-is investigated. The model has been applied to 6 and 10 MV photon beams produced by a Philips-Elekta SL-15 medical linear accelerator. Both EFR and MBS are determined simultaneously using conventional measured data at the isocenter and the calculated in-air output factors (S(c)) were in good agreement with the measured values. When the square field size changes from 4x4 to 40x40 cm(2), the total intensities of EFR were 17.6% and 13%, while the MBS contributions to S(c) were 0.1% and 0.2% for 6 and 10 mv, respectively. The model was also used to calculate S(c) for symmetric or asymmetric rectangular jaws-defined fields with an accuracy of less than 0.2% at extended or shortened source detector distances Moreover, the model was verified for both very small field sizes (2x2 cm(2) down to 0.6x0.6 cm(2)) and for field sizes defined by micro multi-leaf collimator to check its applicability for stereotactic radiotherapy dose calculations. A simple programme is designed to facilitate the calculation process of S(c) for a medical linear accelerator at different situations either for commissioning or verification of the model at different energies.

4.
Phys Rev Lett ; 85(17): 3680-3, 2000 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-11030980

RESUMO

A massive redistribution of the polariton occupancy to two specific wave vectors, zero and approximately 3.9x10(4) cm(-1), is observed under conditions of continuous wave excitation of a semiconductor microcavity. The "condensation" of the polaritons to the two specific states arises from stimulated scattering at final state occupancies of order unity. The stimulation phenomena, arising due to the bosonic character of the polariton quasiparticles, occur for conditions of resonant excitation of the lower polariton branch. High energy nonresonant excitation, as in most previous work, instead leads to conventional lasing in the vertical cavity structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA