Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Am Chem Soc ; 140(44): 14777-14788, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30208274

RESUMO

A multitechnique spectroscopic and theoretical study of the Cp2M(benzenedithiolato) (M = Ti, V, Mo; Cp = η5-C5H5) series provides deep insight into dithiolene electronic structure contributions to electron transfer reactivity and reduction potential modulation in pyranopterin molybdenum enzymes. This work explains the magnitude of the dithiolene folding distortion and the concomitant changes in metal-ligand covalency that are sensitive to electronic structure changes as a function of d-electron occupancy in the redox orbital. It is shown that the large fold angle differences correlate with covalency, and the fold angle distortion is due to a pseudo-Jahn-Teller (PJT) effect. The PJT effect in these and related transition metal dithiolene systems arises from the small energy differences between metal and sulfur valence molecular orbitals, which uniquely poise these systems for dramatic geometric and electronic structure changes as the oxidation state changes. Herein, we have used a combination of resonance Raman, magnetic circular dichroism, electron paramagnetic resonance, and UV photoelectron spectroscopies to explore the electronic states involved in the vibronic coupling mechanism. Comparison between the UV photoelectron spectroscopy (UPS) of the d2 M = Mo complex and the resonance Raman spectra of the d1 M = V complex reveals the power of this combined spectroscopic approach. Here, we observe that the UPS spectrum of Cp2Mo(bdt) contains an intriguing vibronic progession that is dominated by a "missing-mode" that is composed of PJT-active distortions. We discuss the relationship of the PJT distortions to facile electron transfer in molybdenum enzymes.


Assuntos
Molibdênio/química , Compostos Organometálicos/química , Domínio Catalítico , Transporte de Elétrons , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos de Sulfidrila/química , Vibração
2.
J Biol Inorg Chem ; 20(2): 253-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25261289

RESUMO

Sulfite-oxidizing enzymes (SOEs) are molybdenum enzymes that exist in almost all forms of life where they carry out important functions in protecting cells and organisms against sulfite-induced damage. Due to their nearly ubiquitous presence in living cells, these enzymes can be assumed to be evolutionarily ancient, and this is reflected in the fact that the basic domain architecture and fold structure of all sulfite-oxidizing enzymes studied so far are similar. The Mo centers of all SOEs have five-coordinate square pyramidal coordination geometry, which incorporates a pyranopterin dithiolene cofactor. However, significant differences exist in the quaternary structure of the enzymes, as well as in the kinetic properties and the nature of the electron acceptors used. In addition, some SOEs also contain an integral heme group that participates in the overall catalytic cycle. Catalytic turnover involves the paramagnetic Mo(V) oxidation state, and EPR spectroscopy, especially high-resolution pulsed EPR spectroscopy, provides detailed information about the molecular and electronic structure of the Mo center and the Mo-based sulfite oxidation reaction.


Assuntos
Molibdênio/química , Sulfito Oxidase/química , Sulfitos/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Cinética , Modelos Moleculares , Sulfito Oxidase/metabolismo
3.
Inorg Chem ; 53(2): 961-71, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24387640

RESUMO

Molybdenum enzymes contain at least one pyranopterin dithiolate (molybdopterin, MPT) moiety that coordinates Mo through two dithiolate (dithiolene) sulfur atoms. For sulfite oxidase (SO), hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of magnetic nuclei (I ≠ 0) near the Mo(V) (d(1)) center have been measured using high-resolution pulsed electron paramagnetic resonance (EPR) methods and interpreted with the help of density functional theory (DFT) calculations. These have provided important insights about the active site structure and the reaction mechanism of the enzyme. However, it has not been possible to use EPR to probe the dithiolene sulfurs directly since naturally abundant (32)S has no nuclear spin (I = 0). Here we describe direct incorporation of (33)S (I = 3/2), the only stable magnetic sulfur isotope, into MPT using controlled in vitro synthesis with purified proteins. The electron spin echo envelope modulation (ESEEM) spectra from (33)S-labeled MPT in this catalytically active SO variant are dominated by the "interdoublet" transition arising from the strong nuclear quadrupole interaction, as also occurs for the (33)S-labeled exchangeable equatorial sulfite ligand [ Klein, E. L., et al. Inorg. Chem. 2012 , 51 , 1408 - 1418 ]. The estimated experimental hfi and nqi parameters for (33)S (aiso = 3 MHz and e(2)Qq/h = 25 MHz) are in good agreement with those predicted by DFT. In addition, the DFT calculations show that the two (33)S atoms are indistinguishable by EPR and reveal a strong intermixing between their out-of-plane pz orbitals and the dxy orbital of Mo(V).


Assuntos
Coenzimas/química , Molibdênio/química , Engenharia de Proteínas , Sulfito Oxidase/química , Sulfito Oxidase/metabolismo , Biocatálise , Domínio Catalítico , Coenzimas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Molibdênio/metabolismo , Teoria Quântica , Sulfito Oxidase/genética , Isótopos de Enxofre/química
4.
Coord Chem Rev ; 257(1): 110-118, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23440026

RESUMO

Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO(3) (2-)) to sulfate (SO(4) (2-)). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH(-), H(2)O, SO(3) (2-), or SO(4) (2-) group, because the primary O and S isotopes ((16)O and (32)S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.

5.
J Biol Inorg Chem ; 18(6): 645-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23779234

RESUMO

Sulfite oxidase (SO) is a vital metabolic enzyme that catalyzes the oxidation of toxic sulfite to sulfate. The proposed mechanism of this molybdenum cofactor dependent enzyme involves two one-electron intramolecular electron transfer (IET) steps from the molybdenum center to the iron of the b 5-type heme and two one-electron intermolecular electron transfer steps from the heme to cytochrome c. This work focuses on how the electrostatic interaction between two conserved amino acid residues, R472 and D342, in human SO (hSO) affects catalysis. The hSO variants R472M, R472Q, R472K, R472D, and D342K were created to probe the effect of the position of the salt bridge charges, along with the interaction between these two residues. With the exception of R472K, these variants all showed a significant decrease in their IET rate constants, k et, relative to wild-type hSO, indicating that the salt bridge between residues 472 and 342 is important for rapid IET. Surprisingly, however, except for R472K and R472D, all of the variants show k cat values higher than their corresponding k et values. The turnover number for R472D is about the same as k et, which suggests that the change in this variant is rate-limiting in catalysis. Direct spectroelectrochemical determination of the Fe(III/II) reduction potentials of the heme and calculation of the Mo(VI/V) potentials revealed that all of the variants affected the redox potentials of both metal centers, probably due to changes in their environments. Thus, the position of the positive charge of R472 and that of the negative charge of D342 are both important in hSO, and changing either the position or the nature of these charges perturbs IET and catalysis.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Sais/metabolismo , Transporte de Elétrons , Humanos , Cinética , Lasers , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Fotólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sais/química
6.
J Inorg Biochem ; 247: 112312, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37441922

RESUMO

Sulfite oxidase (SO) deficiency, an inherited disease that causes severe neonatal neurological problems and early death, arises from defects in the biosynthesis of the molybdenum cofactor (Moco) (general sulfite oxidase deficiency) or from inborn errors in the SUOX gene for SO (isolated sulfite oxidase deficiency, ISOD). The X-ray structure of the highly homologous homonuclear dimeric chicken sulfite oxidase (cSO) provides a template for locating ISOD mutation sites in human sulfite oxidase (hSO). Catalysis occurs within an individual subunit of hSO, but mutations that disrupt the hSO dimer are pathological. The catalytic cycle of SO involves five metal oxidation states (MoVI, MoV, MoIV, FeIII, FeII), two intramolecular electron transfer (IET) steps, and couples a two-electron oxygen atom transfer reaction at the Mo center with two one-electron transfers from the integral b-type heme to exogenous cytochrome c, the physiological oxidant. Several ISOD examples are analyzed using steady-state, stopped-flow, and laser flash photolysis kinetics and physical measurements of recombinant variants of hSO and native cSO. In the structure of cSO, Mo…Fe = 32 Å, much too long for efficient IET through the protein. Interdomain motion that brings the Mo and heme centers closer together to facilitate IET is supported indirectly by decreasing the length of the interdomain tether, by changes in the charges of surface residues of the Mo and heme domains, as well as by preliminary molecular dynamics calculations. However, direct dynamic measurements of interdomain motion are in their infancy.


Assuntos
Compostos Férricos , Sulfito Oxidase , Humanos , Recém-Nascido , Heme/química , Molibdênio/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Sulfito Oxidase/genética , Sulfito Oxidase/química , Sulfito Oxidase/metabolismo , Galinhas , Animais
7.
J Biol Inorg Chem ; 17(3): 345-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22057690

RESUMO

Sulfite oxidase (SO) is a molybdoheme enzyme that is important in sulfur catabolism, and mutations in the active site region are known to cause SO deficiency disorder in humans. This investigation probes the effects that mutating aromatic residues (Y273, W338, and H337) in the molybdenum-containing domain of human SO have on both the intramolecular electron transfer (IET) rate between the molybdenum and iron centers using laser flash photolysis and on catalytic turnover via steady-state kinetic analysis. The W338 and H337 mutants show large decreases in their IET rate constants (k (ET)) relative to the wild-type values, suggesting the importance of these residues for rapid IET. In contrast, these mutants are catalytically competent and exhibit higher k (cat) values than their corresponding k (ET), implying that these two processes involve different conformational states of the protein. Redox potential investigations using spectroelectrochemistry revealed that these aromatic residues close to the molybdenum center affect the potential of the presumably distant heme center in the resting state (as shown by the crystal structure of chicken SO), suggesting that the heme may be interacting with these residues during IET and/or catalytic turnover. These combined results suggest that in solution human SO may adopt different conformations for IET and for catalysis in the presence of the substrate. For IET the H337/W338 surface residues may serve as an alternative-docking site for the heme domain. The similarities between the mutant and wild-type EPR spectra indicate that the active site geometry around the Mo(V) center is not changed by the mutations studied here.


Assuntos
Aminoácidos Aromáticos/química , Elétrons , Heme/química , Molibdênio/química , Sulfito Oxidase/química , Catálise , Domínio Catalítico , Eletroquímica , Heme/genética , Heme/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Molibdênio/metabolismo , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfito Oxidase/genética , Sulfito Oxidase/metabolismo
8.
Inorg Chem ; 51(3): 1408-18, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22225516

RESUMO

In our previous study of the fatal R160Q mutant of human sulfite oxidase (hSO) at low pH (Astashkin et al. J. Am. Chem. Soc.2008, 130, 8471-8480), a new Mo(V) species, denoted "species 1", was observed at low pH values. Species 1 was ascribed to a six-coordinate Mo(V) center with an exchangeable terminal oxo ligand and an equatorial sulfate group on the basis of pulsed EPR spectroscopy and (33)S and (17)O labeling. Here we report new results for species 1 of R160Q, based on substitution of the sulfur-containing ligand by a phosphate group, pulsed EPR spectroscopy in K(a)- and W-bands, and extensive density functional theory (DFT) calculations applied to large, more realistic molecular models of the enzyme active site. The combined results unambiguously show that species 1 has an equatorial sulfite as the only exchangeable ligand. The two types of (17)O signals that are observed arise from the coordinated and remote oxygen atoms of the sulfite ligand. A typical five-coordinate Mo(V) site is compatible with the observed and calculated EPR parameters.


Assuntos
Molibdênio/química , Sulfito Oxidase/química , Enxofre/química , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligantes
9.
J Inorg Biochem ; 231: 111801, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35339771

RESUMO

Over 50 molybdenum enzymes in three distinct families (sulfite oxidase, xanthine oxidase, DMSO reductase) are known, and representative X-ray crystal structures are available for all families. Structural analogues that replicate the coordination about the Mo atom in the absence of surrounding protein have been synthesized and characterized. The properties of metal complexes of non-innocent dithiolene ligands and their oxidized counter parts, dithiones, are summarized. Pulsed electron paramagnetic resonance (EPR) spectroscopy of the 33S-labeled molybdenum domain of catalytically active bioengineered sulfite oxidase has clearly demonstrated delocalization of electron density from MoV to the dithiolene component of the molybdenum cofactor (Moco) of the enzyme. Moco is highly covalent and has three redox active components: the Mo atom; the dithiolene; and the pterin. In principle, Moco can have a total of eight redox states, making it one of the most redox rich cofactors in biology. The {Moco}n formalism, developed here, gives the total number of electrons (n) associated with a particular redox state of Moco. This flexible notation eliminates the need to assign a specific oxidation state to each of the three components of Moco and allows for internal redistribution of electrons among the components upon substrate binding, changes in the surrounding network of hydrogen bonds, conformational changes, and catalysis. An unexpected result is that sulfite oxidase (an oxotransferase) is predicted to utilize the {Moco}4-6 electron distributions during catalysis, whereas xanthine oxidase (a hydroxylase) is predicted to utilize the {Moco}6-8 electron distributions during catalysis.


Assuntos
Metaloproteínas , Sulfito Oxidase , Coenzimas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Molibdênio/química , Cofatores de Molibdênio , Pteridinas , Sulfito Oxidase/química
10.
Biochemistry ; 50(41): 8813-22, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21916412

RESUMO

Mitochondrial amidoxime reducing components (mARC-1 and mARC-2) represent a novel group of Mo-containing enzymes in eukaryotes. These proteins form the catalytic part of a three-component enzyme complex known to be responsible for the reductive activation of several N-hydroxylated prodrugs. No X-ray crystal structures are available for these enzymes as yet. A previous biochemical investigation [Wahl, B., et al. (2010) J. Biol. Chem., 285, 37847-37859 ] has revealed that two of the Mo coordination positions are occupied by sulfur atoms from a pyranopterindithiolate (molybdopterin, MPT) cofactor. In this work, we have used continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy and density functional theoretical (DFT) calculations to determine the nature of remaining ligands in the Mo(V) state of the active site of mARC-2. Experiments with samples in D(2)O have identified the exchangeable equatorial ligand as a hydroxyl group. Experiments on samples in H(2)(17)O-enriched buffer have shown the presence of a slowly exchangeable axial oxo ligand. Comparison of the experimental (1)H and (17)O hyperfine interactions with those calculated using DFT has shown that the remaining nonexchangeable equatorial ligand is, most likely, protein-derived and that the possibility of an equatorial oxo ligand can be excluded.


Assuntos
Coenzimas/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Metaloproteínas/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Molibdênio/química , Oxirredutases/química , Pteridinas/química , Bioquímica/métodos , Soluções Tampão , Domínio Catalítico , Cristalografia por Raios X/métodos , Humanos , Ligantes , Modelos Químicos , Cofatores de Molibdênio , Isótopos de Oxigênio/química , Ligação Proteica
11.
Inorg Chem ; 50(21): 11021-31, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21988484

RESUMO

The electronic interactions between metals and dithiolenes are important in the biological processes of many metalloenzymes as well as in diverse chemical and material applications. Of special note is the ability of the dithiolene ligand to support metal centers in multiple coordination environments and oxidation states. To better understand the nature of metal-dithiolene electronic interactions, new capabilities in gas-phase core photoelectron spectroscopy for molecules with high sublimation temperatures have been developed and applied to a series of molecules of the type Cp(2)M(bdt) (Cp = η(5)-cyclopentadienyl, M = Ti, V, Mo, and bdt = benzenedithiolato). Comparison of the gas-phase core and valence ionization energy shifts provides a unique quantitative energy measure of valence orbital overlap interactions between the metal and the sulfur orbitals that is separated from the effects of charge redistribution. The results explain the large amount of sulfur character in the redox-active orbitals and the 'leveling' of oxidation state energies in metal-dithiolene systems. The experimentally determined orbital interaction energies reveal a previously unidentified overlap interaction of the predominantly sulfur HOMO of the bdt ligand with filled π orbitals of the Cp ligands, suggesting that direct dithiolene interactions with other ligands bound to the metal could be significant for other metal-dithiolene systems in chemistry and biology.


Assuntos
Química Bioinorgânica/métodos , Complexos de Coordenação/química , Metaloproteínas/química , Molibdênio/química , Tionas/química , Complexos de Coordenação/análise , Elétrons , Ligantes , Metaloproteínas/análise , Modelos Moleculares , Estrutura Molecular , Oxirredução , Espectroscopia Fotoeletrônica , Teoria Quântica , Eletricidade Estática , Enxofre/química , Termodinâmica , Tionas/análise
12.
Biochemistry ; 49(34): 7242-54, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20666399

RESUMO

Sulfite oxidizing enzymes (SOEs) are molybdenum cofactor-dependent enzymes that are found in plants, animals, and bacteria. Sulfite oxidase (SO) is found in animals and plants, while sulfite dehydrogenase (SDH) is found in bacteria. In animals, SO catalyzes the oxidation of toxic sulfite to sulfate as the final step in the catabolism of the sulfur-containing amino acids, methionine and cysteine. In humans, sulfite oxidase deficiency is an inherited recessive disorder that produces severe neonatal neurological problems that lead to early death. Plant SO (PSO) also plays an important role in sulfite detoxification and in addition serves as an intermediate enzyme in the assimilatory reduction of sulfate. In vertebrates, the proposed catalytic mechanism of SO involves two intramolecular one-electron transfer (IET) steps from the molybdenum cofactor to the iron of the integral b-type heme. A similar mechanism is proposed for SDH, involving its molybdenum cofactor and c-type heme. However, PSO, which lacks an integral heme cofactor, uses molecular oxygen as its electron acceptor. Here we review recent results for SOEs from kinetic measurements, computational studies, electron paramagnetic resonance (EPR) spectroscopy, electrochemical measurements, and site-directed mutagenesis on active site residues of SOEs and of the flexible polypepetide tether that connects the heme and molybdenum domains of human SO. Rapid kinetic studies of PSO are also discussed.


Assuntos
Análise Espectral , Sulfitos/metabolismo , Animais , Sítios de Ligação , Catálise , Coenzimas , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Heme/análogos & derivados , Heme/química , Heme/metabolismo , Humanos , Cinética , Metaloproteínas , Molibdênio/química , Cofatores de Molibdênio , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Pteridinas , Sulfito Desidrogenase/química , Sulfito Desidrogenase/metabolismo , Sulfito Oxidase/química , Sulfito Oxidase/metabolismo
13.
Biochemistry ; 49(6): 1290-6, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20063894

RESUMO

Sulfite oxidase (SO) is a vitally important molybdenum enzyme that catalyzes the oxidation of toxic sulfite to sulfate. The proposed catalytic mechanism of vertebrate SO involves two intramolecular one-electron transfer (IET) steps from the molybdenum cofactor to the iron of the integral b-type heme and two intermolecular one-electron steps to exogenous cytochrome c. In the crystal structure of chicken SO [Kisker, C., et al. (1997) Cell 91, 973-983], which is highly homologous to human SO (HSO), the heme iron and molybdenum centers are separated by 32 A and the domains containing these centers are linked by a flexible polypeptide tether. Conformational changes that bring these two centers into greater proximity have been proposed [Feng, C., et al. (2003) Biochemistry 42, 5816-5821] to explain the relatively rapid IET kinetics, which are much faster than those theoretically predicted from the crystal structure. To explore the proposed role(s) of the tether in facilitating this conformational change, we altered both its length and flexibility in HSO by site-specific mutagenesis, and the reactivities of the resulting variants have been studied using laser flash photolysis and steady-state kinetics assays. Increasing the flexibility of the tether by mutating several conserved proline residues to alanines did not produce a discernible systematic trend in the kinetic parameters, although mutation of one residue (P105) to alanine produced a 3-fold decrease in the IET rate constant. Deletions of nonconserved amino acids in the 14-residue tether, thereby shortening its length, resulted in more drastically reduced IET rate constants. Thus, the deletion of five amino acid residues decreased IET by 70-fold, so that it was rate-limiting in the overall reaction. The steady-state kinetic parameters were also significantly affected by these mutations, with the P111A mutation causing a 5-fold increase in the sulfite K(m) value, perhaps reflecting a decrease in the ability to bind sulfite. The electron paramagnetic resonance spectra of these proline to alanine and deletion mutants are identical to those of wild-type HSO, indicating no significant change in the Mo active site geometry.


Assuntos
Sulfito Oxidase/química , Alanina/genética , Substituição de Aminoácidos/genética , Animais , Domínio Catalítico/genética , Galinhas , Sequência Conservada/genética , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons/genética , Humanos , Cinética , Molibdênio/química , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Prolina/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência/genética , Sulfito Oxidase/genética , Sulfito Oxidase/metabolismo
14.
Biochemistry ; 49(25): 5154-9, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20491442

RESUMO

The Mo(V) state of the molybdoenzyme sulfite oxidase (SO) is paramagnetic and can be studied by electron paramagnetic resonance (EPR) spectroscopy. Vertebrate SO at pH <7 and >9 exhibits characteristic EPR spectra that correspond to two structurally different forms of the Mo(V) active center termed the low-pH (lpH) and high-pH (hpH) forms, respectively. Both EPR forms have an exchangeable equatorial OH ligand, but its orientation in the two forms is different. It has been hypothesized that the formation of the lpH species is dependent on the presence of chloride. In this work, we have prepared and purified samples of the wild type and various mutants of human SO that are depleted of chloride. These samples do not exhibit the typical lpH EPR spectrum at low pH but rather exhibit spectra that are characteristic of the blocked species that contains an exchangeable equatorial sulfate ligand. Addition of chloride to these samples results in the disappearance of the blocked species and the formation of the lpH species. Similarly, if chloride is added before sulfite, the lpH species is formed instead of the blocked one. Qualitatively similar results were observed for samples of sulfite-oxidizing enzymes from other organisms that were previously reported to form a blocked species at low pH. However, the depletion of chloride has no effect upon the formation of the hpH species.


Assuntos
Ânions , Cloretos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Sulfito Oxidase/química , Humanos
15.
J Biol Inorg Chem ; 15(4): 505-14, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20084533

RESUMO

Continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopy have been used to characterize two variants of bacterial sulfite dehydrogenase (SDH) from Starkeya novella in which the conserved active-site arginine residue (R55) is replaced by a neutral amino acid residue. Substitution by the hydrophobic methionine residue (SDH(R55M)) has essentially no effect on the pH dependence of the EPR properties of the Mo(V) center, even though the X-ray structure of this variant shows that the methionine residue is rotated away from the Mo center and a sulfate anion is present in the active-site pocket (Bailey et al. in J Biol Chem 284:2053-2063, 2009). For SDH(R55M) only the high-pH form is observed, and samples prepared in H(2)(17)O-enriched buffer show essentially the same (17)O hyperfine interaction and nuclear quadrupole interaction parameters as SDH(WT) enzyme. However, the pH dependence of the EPR spectra of SDH(R55Q), in which the positively charged arginine is replaced by the neutral hydrophilic glutamine, differs significantly from that of SDH(WT). For SDH(R55Q) the blocked form with bound sulfate is generated at low pH, as verified by (33)S couplings observed upon reduction with (33)S-labeled sulfite. This observation of bound sulfate for SDH(R55Q) supports our previous hypothesis that sulfite-oxidizing enzymes can exhibit multiple pathways for electron transfer and product release (Emesh et al. in Biochemistry 48:2156-2163, 2009). At pH > or = 8 the high-pH form dominates for SDH(R55Q).


Assuntos
Alphaproteobacteria/enzimologia , Substituição de Aminoácidos , Variação Genética , Molibdênio , Proteínas Mutantes/química , Sulfito Desidrogenase/química , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Sulfito Desidrogenase/genética , Sulfito Desidrogenase/metabolismo
16.
Inorganics (Basel) ; 8(3)2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34327225

RESUMO

Here we highlight past work on metal-dithiolene interactions and how the unique electronic structure of the metal-dithiolene unit contributes to both the oxidative and reductive half reactions in pyranopterin molybdenum and tungsten enzymes. The metallodithiolene electronic structures detailed here were interrogated using multiple ground and excited state spectroscopic probes on the enzymes and their small molecule analogs. The spectroscopic results have been interpreted in the context of bonding and spectroscopic calculations, and the pseudo-Jahn-Teller effect. The dithiolene is a unique ligand with respect to its redox active nature, electronic synergy with the pyranopterin component of the molybdenum cofactor, and the ability to undergo chelate ring distortions that control covalency, reduction potential, and reactivity in pyranopterin molybdenum and tungsten enzymes.

17.
Biochemistry ; 48(10): 2156-63, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19226119

RESUMO

All reported sulfite-oxidizing enzymes have a conserved arginine in their active site which hydrogen bonds to the equatorial oxygen ligand on the Mo atom. Previous studies on the pathogenic R160Q mutant of human sulfite oxidase (HSO) have shown that Mo-heme intramolecular electron transfer (IET) is dramatically slowed when positive charge is lost at this position. To improve our understanding of the function that this conserved positively charged residue plays in IET, we have studied the equivalent uncharged substitutions R55Q and R55M as well as the positively charged substitution R55K in bacterial sulfite dehydrogenase (SDH). The heme and molybdenum cofactor (Moco) subunits are tightly associated in SDH, which makes it an ideal system for improving our understanding of residue function in IET without the added complexity of the interdomain movement that occurs in HSO. Unexpectedly, the uncharged SDH variants (R55Q and R55M) exhibited increased IET rate constants relative to that of the wild type (3-4-fold) when studied by laser flash photolysis. The gain in function observed in SDH(R55Q) and SDH(R55M) suggests that the reduction in the level of IET seen in HSO(R160Q) is not due to a required role of this residue in the IET pathway itself, but to the fact that it plays an important role in heme orientation during the interdomain movement necessary for IET in HSO (as seen in viscosity experiments). The pH profiles of SDH(WT), SDH(R55M), and SDH(R55Q) show that the arginine substitution also alters the behavior of the Mo-heme IET equilibrium (K(eq)) and rate constants (k(et)) of both variants with respect to the SDH(WT) enzyme. SDH(WT) has a k(et) that is independent of pH and a K(eq) that increases as pH decreases; on the other hand, both SDH(R55M) and SDH(R55Q) have a k(et) that increases as pH decreases, and SDH(R55M) has a K(eq) that is pH-independent. IET in the SDH(R55Q) variant is inhibited by sulfate in laser flash photolysis experiments, a behavior that differs from that of SDH(WT), but which also occurs in HSO. IET in SDH(R55K) is slower than in SDH(WT). A new analysis of the possible mechanistic pathways for sulfite-oxidizing enzymes is presented and related to available kinetic and EPR results for these enzymes.


Assuntos
Arginina/metabolismo , Domínio Catalítico/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Substituição de Aminoácidos/fisiologia , Arginina/genética , Transporte de Elétrons , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lasers , Modelos Químicos , Modelos Moleculares , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Fotólise , Proteobactérias/enzimologia , Proteobactérias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfatos/química
18.
Inorg Chem ; 48(18): 8856-62, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19691275

RESUMO

Molecules of the general form Tp*MoO(OR)(2) [where Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate and (OR)(2) = (OMe)(2), (OEt)(2), and (O(n)Pr)(2) for alkoxide ligands and (OR)(2) = O(CH(2))(3)O, O(CH(2))(4)O, and O[CH(CH(3))CH(2)CH(CH(3))]O for diolato ligands] were studied using gas-phase photoelectron spectroscopy, cyclic voltammetry, and density functional theory (DFT) calculations to examine the effect of increasing ligand size and structure on the oxomolybdenum core. Oxidation potentials and first ionization energies are shown to be sensitive to the character of the diolato and alkoxide ligands. A linear correlation between the solution-phase oxidation potentials and the gas-phase ionization energies resulted in an unexpected slope of greater than unity. DFT calculations indicated that this unique example of a system in which oxidation potentials are more sensitive to substitution than vertical ionization energies is due to the large differences in the cation reorganization energies, which range from 0.2 eV or less for the molecules with diolato ligands to around 0.5 eV for the molecules with alkoxide ligands.


Assuntos
Compostos Organometálicos/química , Oxigênio/química , Teoria Quântica , Eletroquímica , Gases , Ligantes , Estrutura Molecular , Transição de Fase , Solventes/química , Termodinâmica
19.
Inorg Chem ; 48(11): 4743-52, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19402624

RESUMO

Electron spin echo envelope modulation (ESEEM) investigations were carried out on samples of the low-pH (lpH) form of vertebrate sulfite oxidase (SO) prepared with (35)Cl- and (37)Cl-enriched buffers, as well as with buffer containing the natural abundance of Cl isotopes. The isotope-related changes observed in the ESEEM spectra provide direct and unequivocal evidence that Cl(-) is located in close proximity to the Mo(V) center of lpH SO. The measured isotropic hyperfine interaction constant of about 4 MHz ((35)Cl) suggests that the Cl(-) ion is either weakly coordinated to Mo(V) at its otherwise vacant axial position, trans to the oxo ligand, or is hydrogen-bonded to the equatorial exchangeable OH ligand. Scalar relativistic all-electron density functional theory (DFT) calculations of the hyperfine and nuclear quadrupole interaction parameters, along with steric and energetic arguments, strongly support the possibility that Cl(-) is hydrogen-bonded to the equatorial OH ligand rather than being directly coordinated to the Mo(V).


Assuntos
Cloretos/análise , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Químicos , Sulfito Oxidase/química , Sulfito Oxidase/metabolismo , Domínio Catalítico , Simulação por Computador , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Marcação por Isótopo , Ligantes , Molibdênio/química , Compostos Organometálicos/química
20.
Inorganica Chim Acta ; 362(12): 4603-4608, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20161396

RESUMO

The tris(pyrazolyl)borate and related tripodal N-donor ligands originally developed by Trofimenko stabilize mononuclear compounds containing Mo(VI)O(2), Mo(VI)O, Mo(V)O, and Mo(IV)O units and effectively inhibit their polynucleation in organic solvents. Dioxo-Mo(VI) complexes of the type LMoO(2)(SPh), where L = hydrotris(3,5-dimethylpyrazol-1-yl)borate (Tp*), hydrotris(3-isopropylpyrazol-1-yl)borate (Tp(i) (Pr)), and hydrotris(3,5-dimethyl-1,2,4-triazol-1-yl)borate (Tz) and related derivatives are the only model systems that mimic the complete reaction sequence of sulfite oxidase, in which oxygen from water is ultimately incorporated into product. The quasi-reversible, one-electron reduction of Tp*MoO(2)(SPh) in acetonitrile exhibits a positive potential shift upon addition of a hydroxylic proton donor, and the magnitude of the shift correlates with the acidity of the proton donor. These reductions produce two Mo(V) species, [Tp*Mo(V)O(2)(SPh)](-) and Tp*Mo(V)O(OH)(SPh), that are related by protonation. Measurement of the relative amounts of these two Mo(V) species by EPR spectroscopy enabled the pK(a) of the Mo(V)(OH) unit in acetonitrile to be determined and showed it to be several pK(a) units smaller than that for water in acetonitrile. Similar electrochemical-EPR experiments for Tp(i) (Pr)MoO(2)(SPh) indicated that the pK(a) for its Mo(V)(OH) unit was ∼1.7 units smaller than that for Tp*Mo(V)O(OH)(SPh). Density functional theory calculations also predict a smaller pK(a) for (iPr)Mo(V)O(OH)(SPh) compared to Tp*Mo(V)O(OH)(SPh). Analysis of these results indicates that coupled electron-proton transfer (CEPT) is thermodynamically favored over the indirect process of metal reduction followed by protonation. The crystal structure of Tp(i) (Pr)MoO(2)(SPh) is also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA