Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 18(1): 540-545, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29232948

RESUMO

We present a laser interference patterning method for the facile fabrication of large-area and high-contrast arrays of semiconducting fullerene nanostructures, which does not rely on a tedious application of sacrificial photoresists or photomasks. A solution-deposited phenyl-C61-butyric acid methyl ester (PCBM) fullerene thin film is exposed to a spatially modulated illumination intensity, as realized by a two-beam laser interference. The PCBM molecules exposed to strong intensity are photochemically transformed into a low-solubility dimeric state, so that the nontransformed PCBM molecules can be selectively removed in a subsequent solution-based development step. Following brief exposure to green laser light (λ = 532 nm, t = 5 s, p = 0.17 W cm-2) in the designed two-beam interference setup, and a 1 min development in a tuned acetone-chloroform solution, we realize well-defined and ordered PCBM nanostripe patterns with a fwhm line width of ∼200 nm and a repetition rate of ∼2.900 lines mm-1 over a large area of 1 cm2. We demonstrate that a desired high contrast is effectuated because the initial PCBM-dimer transformation rate is dependent on the square of the illumination intensity. The semiconducting functionality of the patterned fullerene is verified in a field-effect transistor experiment, where a typical PCBM nanostripe featured an electron mobility of 5.3 × 10-3 cm2 V-1 s-1 and an on/off ratio of 3 × 103.

2.
Adv Mater ; 26(29): 4975-80, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24831222

RESUMO

Light-emitting electrochemical cells, featuring uniform and efficient light emission over areas of 200 cm(2) , are fabricated under ambient air with a for-the-purpose developed "spray-sintering" process. This fault-tolerant fabrication technique can also produce multicolored emission patterns via sequential deposition of different inks based on identical solvents. Significantly, additive spray-sintering using a mobile airbrush allows a straightforward addition of emissive function onto a wide variety of complex-shaped surfaces, as exemplified by the realization of a light-emitting kitchenware fork.


Assuntos
Ar , Luz , Dispositivos Ópticos , Cor , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA