Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(24): 8504-7, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24892384

RESUMO

We report the preparation and characterization of highly efficient and robust photocathodes based on heterostructures of chemically exfoliated metallic 1T-MoS2 and planar p-type Si for solar-driven hydrogen production. Photocurrents up to 17.6 mA/cm(2) at 0 V vs reversible hydrogen electrode were achieved under simulated 1 sun irradiation, and excellent stability was demonstrated over long-term operation. Electrochemical impedance spectroscopy revealed low charge-transfer resistances at the semiconductor/catalyst and catalyst/electrolyte interfaces, and surface photoresponse measurements also demonstrated slow carrier recombination dynamics and consequently efficient charge carrier separation, providing further evidence for the superior performance. Our results suggest that chemically exfoliated 1T-MoS2/Si heterostructures are promising earth-abundant alternatives to photocathodes based on noble metal catalysts for solar-driven hydrogen production.

2.
J Am Chem Soc ; 136(49): 17163-79, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25399991

RESUMO

Iron pyrite (FeS2) is considered a promising earth-abundant semiconductor for solar energy conversion with the potential to achieve terawatt-scale deployment. However, despite extensive efforts and progress, the solar conversion efficiency of iron pyrite remains below 3%, primarily due to a low open circuit voltage (VOC). Here we report a comprehensive investigation on {100}-faceted n-type iron pyrite single crystals to understand its puzzling low VOC. We utilized electrical transport, optical spectroscopy, surface photovoltage, photoelectrochemical measurements in aqueous and acetonitrile electrolytes, UV and X-ray photoelectron spectroscopy, and Kelvin force microscopy to characterize the bulk and surface defect states and their influence on the semiconducting properties and solar conversion efficiency of iron pyrite single crystals. These insights were used to develop a circuit model analysis for the electrochemical impedance spectroscopy that allowed a complete characterization of the bulk and surface defect states and the construction of a detailed energy band diagram for iron pyrite crystals. A holistic evaluation revealed that the high-density of intrinsic surface states cannot satisfactorily explain the low photovoltage; instead, the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a nonconstant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explaining the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings lead to suggestions to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films for successful solar applications.

3.
Langmuir ; 28(17): 6866-76, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22448779

RESUMO

We demonstrate the formation of molecular monolayers of π-conjugated organic molecules on nanocrystalline TiO(2) surfaces through the thermal grafting of benzyl and aryl halides. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to characterize the reactivity of aryl and benzyl chlorides, bromides, and iodides with TiO(2) surfaces, along with controls consisting of nonhalogenated compounds. Our results show that benzyl and aryl halides follow a similar reactivity trend (I > Br > Cl >> H). While the ability to graft benzyl halides is consistent with the well-known Williamson ether synthesis, the grafting of aryl halides has no similar precedent. The unique reactivity of the TiO(2) surface is demonstrated using nuclear magnetic resonance spectroscopy to compare the surface reactions with the liquid-phase interactions of benzyl and aryl iodides with tert-butanol and -butoxide anion. While the aryl iodides show no detectable reactivity with a tert-butanol/tert-butoxide mixture, they react with TiO(2) within 2 h at 50 °C. Atomic force microscopy studies show that grafting of 4-iodo-1-(trifluoromethyl)benzene onto the rutile TiO(2)(110) surface leads to a very uniform, homogeneous molecular layer with a thickness of ∼0.45 nm, demonstrating formation of a self-terminating molecular monolayer. Thermal grafting of aryl iodides provides a facile route to link π-conjugated molecules to TiO(2) surfaces with the shortest possible linkage between the conjugated electron system and the TiO(2).

4.
ACS Nano ; 9(3): 2510-7, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25748342

RESUMO

Graphene is considered a next-generation electrode for indium tin oxide (ITO)-free organic photovoltaic devices (OPVs). However, to date, limited numbers of OPVs containing surface-modified graphene electrodes perform as well as ITO-based counterparts, and no devices containing a bare graphene electrode have been reported to yield satisfactory rectification characteristics. In this report, we provide experimental data to learn why. Time-resolved surface photoresponse measurements on templated pentacene-on-graphene films directly reveal that p-doped monolayer graphene efficiently extracts electrons, not holes, from photoexcited pentacene. Accordingly, a graphene/pentacene/MoO3 heterojunction displays a large surface photoresponse and, by inference, efficient dissociation of photogenerated excitons, with graphene serving as an electron extraction layer and MoO3 as a hole extraction layer. In contrast, a graphene/pentacene/C60 heterojunction yields a comparatively insignificant surface photoresponse because both graphene and C60 act as competing electron extraction layers. The data presented herein provide experimental insight for future endeavors involving bare graphene as an electrode for organic photovoltaic devices and strongly suggest that p-doped graphene is best considered a cathode for OPVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA