Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Biol ; 19(6): e3001210, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061821

RESUMO

Global biodiversity loss is a profound consequence of human activity. Disturbingly, biodiversity loss is greater than realized because of the unknown number of undocumented species. Conservation fundamentally relies on taxonomic recognition of species, but only a fraction of biodiversity is described. Here, we provide a new quantitative approach for prioritizing rigorous taxonomic research for conservation. We implement this approach in a highly diverse vertebrate group-Australian lizards and snakes. Of 870 species assessed, we identified 282 (32.4%) with taxonomic uncertainty, of which 17.6% likely comprise undescribed species of conservation concern. We identify 24 species in need of immediate taxonomic attention to facilitate conservation. Using a broadly applicable return-on-investment framework, we demonstrate the importance of prioritizing the fundamental work of identifying species before they are lost.


Assuntos
Biodiversidade , Classificação , Pesquisa , Animais , Austrália , Lagartos/classificação , Serpentes/classificação
2.
Syst Biol ; 71(2): 286-300, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34259868

RESUMO

Understanding the factors that cause heterogeneity among gene trees can increase the accuracy of species trees. Discordant signals across the genome are commonly produced by incomplete lineage sorting (ILS) and introgression, which in turn can result in reticulate evolution. Species tree inference using the multispecies coalescent is designed to deal with ILS and is robust to low levels of introgression, but extensive introgression violates the fundamental assumption that relationships are strictly bifurcating. In this study, we explore the phylogenomics of the iconic Liolaemus subgenus of South American lizards, a group of over 100 species mostly distributed in and around the Andes mountains. Using mitochondrial DNA (mtDNA) and genome-wide restriction site-associated DNA sequencing (RADseq; nDNA hereafter), we inferred a time-calibrated mtDNA gene tree, nDNA species trees, and phylogenetic networks. We found high levels of discordance between mtDNA and nDNA, which we attribute in part to extensive ILS resulting from rapid diversification. These data also reveal extensive and deep introgression, which combined with rapid diversification, explain the high level of phylogenetic discordance. We discuss these findings in the context of Andean orogeny and glacial cycles that fragmented, expanded, and contracted species distributions. Finally, we use the new phylogeny to resolve long-standing taxonomic issues in one of the most studied lizard groups in the New World.[Andes; ddRADSeq; introgression; lizards; mtDNA; reptiles; SNPs.].


Assuntos
Lagartos , Animais , DNA Mitocondrial/genética , Genoma , Lagartos/genética , Filogenia , América do Sul
3.
Mol Phylogenet Evol ; 173: 107516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577290

RESUMO

Genomic data are a powerful tool for the elucidation of evolutionary patterns at the population level and above. The combined analysis of genomic and morphological data can result in species delimitation hypotheses that reflect evolutionary history better than traditional taxonomy or any individual source of evidence. Here, we used thousands of single nucleotide polymorphisms, mitochondrial sequences, and comprehensive morphological data to characterize the evolutionary history of the ridge-tailed monitors in the Varanus acanthurus complex (V. acanthurus, V. baritji, and V. storri), a group of saxicolous lizards with a wide distribution in Australia, the driest vegetated continent. We found substantial genetic structure in the group and identify nine geographically clustered populations. Based on admixture patterns and species delimitation analyses we propose a taxonomic scheme that differs from current taxonomy. We consider V. acanthurus as monotypic, synonymize V. baritji with V. a. insulanicus (as a redefined V. insulanicus), elevate the subspecies of V. storri to full species (V. storri and V. ocreatus), and describe a new species from a previously identified center of endemism. The relationships among the species remain unresolved, likely as a result of fast speciation. Our study highlights the capability of large datasets to illuminate admixture patterns, biogeographic history, and species limits, even when phylogeny is not completely resolved. Furthermore, our results highlight the impact that the Cenozoic aridification of Australia had on saxicolous taxa and the role of mesic rocky escarpments as refugia. These habitats apparently allowed the persistence of lineages that became sources of colonization for arid environments.


Assuntos
Lagartos , Animais , Evolução Biológica , Ecossistema , Genoma , Filogenia
4.
Biol Lett ; 18(12): 20220360, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541096

RESUMO

Lineages may diversify when they encounter available ecological niches. Adaptive divergence by ecological opportunity often appears to follow the invasion of a new environment with open ecological space. This evolutionary process is hypothesized to explain the explosive diversification of numerous Australian vertebrate groups following the collision of the Eurasian and Australian plates 25 Mya. One of these groups is the pythons, which demonstrate their greatest phenotypic and ecological diversity in Australo-Papua (Australia and New Guinea). Here, using an updated and near complete time-calibrated phylogenomic hypothesis of the group, we show that following invasion of this region, pythons experienced a sudden burst of speciation rates coupled with multiple instances of accelerated phenotypic evolution in head and body shape and body size. These results are consistent with adaptive radiation theory with an initial rapid niche-filling phase and later slow-down approaching niche saturation. We discuss these findings in the context of other Australo-Papuan adaptive radiations and the importance of incorporating adaptive diversification systems that are not extraordinarily species-rich but ecomorphologically diverse to understand how biodiversity is generated.


Assuntos
Boidae , Animais , Austrália , Filogenia , Ecossistema , Biodiversidade , Evolução Biológica , Especiação Genética
5.
Mol Phylogenet Evol ; 161: 107181, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33892100

RESUMO

Advances from empirical studies in phylogeography, systematics and species delimitation highlight the importance of integrative approaches for quantifying taxonomic diversity. Genomic data have greatly improved our ability to discern both systematic diversity and evolutionary history. Here we combine analyses of mitochondrial DNA sequences, thousands of genome-wide SNPs and linear and geometric morphometrics on Antaresia, a clade of four currently recognised dwarf pythons from Australia and New Guinea (Antaresia childreni, A. stimsoni, A. maculosa and A. perthensis). Our integrative analyses of phylogenetics, population structure, species delimitation, historical demography and morphometrics revealed that the true evolutionary diversity is not well reflected in the current appraisal of the diversity of the group. We find that Antaresia childreni and A. stimsoni comprise a widespread network of populations connected by gene flow and without evidence of species-level divergence among them. However, A. maculosa shows considerable genetic structuring which leads us to recognise two subspecies in northeastern Australia and a new species in Torres Strait and New Guinea. These two contrasting cases of over and under estimation of diversity, respectively, illustrate the power of thorough integrative approaches into understanding evolution of biodiversity. Furthermore, our analyses of historical demographic patterns highlight the importance of the Kimberley, Pilbara and Cape York as origins of biodiversity in Australia.


Assuntos
Boidae/classificação , Boidae/genética , Filogenia , Filogeografia , Animais , Tamanho Corporal , Boidae/anatomia & histologia , DNA Mitocondrial/genética , Fluxo Gênico/genética
6.
Mol Phylogenet Evol ; 158: 106960, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32950680

RESUMO

The large and enigmatic New Guinean pythons in the genus Leiopython are harvested from the wild to supply the international trade in pets. Six species are currently recognized (albertisii, biakensis, fredparkeri, huonensis, meridionalis, montanus) but the taxonomy of this group has been controversial. We combined analysis of 421 nuclear loci and complete mitochondrial genomes with morphological data to construct a detailed phylogeny of this group, understand their biogeographic patterns and establish the systematic diversity of this genus. Our molecular genetic data support two major clades, corresponding to L. albertisii and L. fredparkeri, but offer no support for the other four species. Our morphological data also only support two species. We therefore recognize L. albertisii and L. fredparkeri as valid species and place L. biakensis, L. meridionalis, L. huonensis and L. montanus into synonymy. We found that L. albertisii and L. fredparkeri are sympatric in western New Guinea; an atypical pattern compared to other Papuan species complexes in which the distributions of sister taxa are partitioned to the north and south of the island's central mountain range. For the purpose of conservation management, overestimation of species diversity within Leiopython has resulted in the unnecessary allocation of resources that could have been expended elsewhere. We strongly caution against revising the taxonomy of geographically widespread species groups when little or no molecular genetic data and only small morphological samples are available.


Assuntos
Boidae/classificação , Animais , Boidae/anatomia & histologia , Boidae/genética , Núcleo Celular/genética , Comércio , Conservação dos Recursos Naturais , DNA/química , DNA/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Nova Guiné , Filogenia , Filogeografia , Análise de Componente Principal , Análise de Sequência de DNA
7.
Syst Biol ; 69(6): 1039-1051, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32208482

RESUMO

Ecological opportunities can be provided to organisms that cross stringent biogeographic barriers towards environments with new ecological niches. Wallace's and Lyddeker's lines are arguably the most famous biogeographic barriers, separating the Asian and Australo-Papuan biotas. One of the most ecomorphologically diverse groups of reptiles, the pythons, is distributed across these lines, and are remarkably more diverse in phenotype and ecology east of Lydekker's line in Australo-Papua. We used an anchored hybrid enrichment approach, with near complete taxon sampling, to extract mitochondrial genomes and 376 nuclear loci to resolve and date their phylogenetic history. Biogeographic reconstruction demonstrates that they originated in Asia around 38-45 Ma and then invaded Australo-Papua around 23 Ma. Australo-Papuan pythons display a sizeable expansion in morphological space, with shifts towards numerous new adaptive optima in head and body shape, coupled with the evolution of new micro-habitat preferences. We provide an updated taxonomy of pythons and our study also demonstrates how ecological opportunity following colonization of novel environments can promote morphological diversification in a formerly ecomorphologically conservative group. [Adaptive radiation; anchored hybrid enrichment; biogeography; morphometrics; snakes.].


Assuntos
Evolução Biológica , Boidae/classificação , Ecossistema , Filogenia , Filogeografia , Animais , Ásia , Biodiversidade , Boidae/anatomia & histologia , Boidae/genética , Fenótipo
8.
Proc Biol Sci ; 287(1929): 20201011, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32576112

RESUMO

Many organisms use different antipredator strategies throughout their life, but little is known about the reasons or implications of such changes. For years, it has been suggested that selection by predators should favour uniformity in local warning signals. If this is the case, we would expect high resemblance in colour across life stages in aposematic animals where young and adults share similar morphology and habitat. In this study, we used shield bugs (Hemiptera: Pentatomoidea) to test whether colour and colour diversity evolve similarly at different life stages. Since many of these bugs are considered to be aposematic, we also combined multi-species analyses with predation experiments on the cotton harlequin bug to test whether there is evidence of selection for uniformity in colour across life stages. Overall, we show that the diversity of colours used by both life stages is comparable, but adults are more cryptic than nymphs. We also demonstrate that nymphs and adults of the same species do not tend to look alike. Experiments on our model system suggest that predators can generalise among life stages that look different, and exhibit strong neophobia. Altogether, our results show no evidence of selection favouring colour similarity between adults and nymphs in this speciose clade.


Assuntos
Heterópteros/fisiologia , Pigmentação , Animais , Evolução Biológica , Cor , Ninfa
9.
Mol Phylogenet Evol ; 142: 106640, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605811

RESUMO

Molecular data sets and the increasing use of integrative systematics is revealing cryptic diversity in a range of taxa - particularly in remote and poorly sampled landscapes like the island of New Guinea. Green pythons (Morelia viridis complex) are one of the most conspicuous elements of this island's fauna, with large numbers taken from the wild to supply international demand for exotic pets. We test hypotheses about species boundaries in green pythons from across New Guinea and Australia with mitochondrial genomes, 389 nuclear exons, and comprehensive assessment of morphological variation. Strong genetic structuring of green python populations and species delimitation methods confirm the presence of two species, broadly occurring north and south of New Guinea's central mountains. Our data also support three subspecies within the northern species. Subtle but consistent morphological divergence among the putative taxa is concordant with patterns of molecular divergence. Our extensive sampling identifies several zones of hitherto unknown biogeographical significance on the island of New Guinea. We revise the taxonomy of the group, discuss the relevance of our findings in the context of Papuan biogeography and the implications of our systematic changes for the conservation management of these taxa.


Assuntos
Boidae/classificação , Animais , Austrália , Boidae/genética , Núcleo Celular/genética , Genoma Mitocondrial , Melanesia , Nova Guiné , Filogenia , Filogeografia
10.
Mol Phylogenet Evol ; 139: 106524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31170522

RESUMO

Organisms rapidly diversifying across unstable environments such as mountain tops provide substantial challenges for resolving evolutionary histories and delimiting species. The Liolaemus leopardinus clade is a group of five species of lizards adapted to high altitudes in central Chile, with most species found in the Andes, but one species, L. frassinettii is found in the independent Costa Cordillera. Despite their allopatric distributions, they display shallow mitochondrial divergences, making phylogenetics and species delimitation of this clade hard to resolve. We use an integrative approach to delimit species by considering morphological data (linear and landmark-based), mitochondrial DNA (mtDNA), and nuclear DNA (Sequences and SNPs collected with ddRADseq). We find strong conflicting signals between phylogenetic analyses of the nuclear and mtDNA data. While mtDNA places L. frassinettii as sister to the rest of the clade, the SNPs support a south to north order of divergences, with southernmost species (new taxon described here) as sister to the rest of the clade. Moreover, species delimitation using mtDNA only supports two species (one in the Costa and one in the Andes), whereas combined analyses using the nuclear data and morphology support multiple Andean taxa, including a new one we describe here. Based on these results, population structure analyses and our knowledge of the geological and climatic history of the Andes, we argue that this mito-nuclear discordance is explained by past introgression among the Andean taxa, likely during glacial periods that forced these lizards to lower altitudes where they would hybridize. The complete isolation between the Costa and Andes cordilleras has prevented any further contact between taxa on either mountain chain. Our study highlights the importance of using multiple lines of evidence to resolve evolutionary histories, and the potential misleading results from relying solely on mtDNA.


Assuntos
Especiação Genética , Lagartos/classificação , Lagartos/genética , Filogenia , Altitude , Animais , Chile , DNA Mitocondrial/genética , Genoma/genética , Hibridização Genética , Polimorfismo de Nucleotídeo Único/genética
11.
Ecol Lett ; 19(7): 800-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27264195

RESUMO

Pythons and boas are globally distributed and distantly related radiations with remarkable phenotypic and ecological diversity. We tested whether pythons, boas and their relatives have evolved convergent phenotypes when they display similar ecology. We collected geometric morphometric data on head shape for 1073 specimens representing over 80% of species. We show that these two groups display strong and widespread convergence when they occupy equivalent ecological niches and that the history of phenotypic evolution strongly matches the history of ecological diversification, suggesting that both processes are strongly coupled. These results are consistent with replicated adaptive radiation in both groups. We argue that strong selective pressures related to habitat-use have driven this convergence. Pythons and boas provide a new model system for the study of macro-evolutionary patterns of morphological and ecological evolution and they do so at a deeper level of divergence and global scale than any well-established adaptive radiation model systems.


Assuntos
Evolução Biológica , Boidae/classificação , Ecossistema , Seleção Genética , Adaptação Biológica , Animais , Boidae/anatomia & histologia , Cabeça/anatomia & histologia , Modelos Biológicos , Fenótipo , Filogenia
12.
J Therm Biol ; 43: 33-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24956955

RESUMO

Incubation temperature is one of the most studied factors driving phenotypic plasticity in oviparous reptiles. We examined how incubation temperature influenced hatchling morphology, thermal preference and temperature-dependent running speed in the small Australian agamid lizard Amphibolurus muricatus. Hatchlings incubated at 32 °C grew more slowly than those incubated at 25 and 28 °C during their first month after hatching, and tended to be smaller at one month. These differences were no longer significant by three months of age due to selective mortality of the smallest hatchlings. The cooler incubation treatments (25 °C and 28 °C) produced lizards that had deeper and wider heads. Hatchlings from 28 °C had cooler and more stable temperature preferences, and also had lower body temperatures during a 2-h thermoregulatory behaviour trial. Locomotor performance was enhanced at higher body temperatures, but incubation temperature had no measurable effect either independently or in interaction with body temperature. Our study demonstrates that incubation temperature has direct effects on morphology and thermoregulatory behaviour that appears to be independent of any size-dependent effects. We postulate a mechanistic link between these two effects.


Assuntos
Lagartos/anatomia & histologia , Lagartos/fisiologia , Corrida/fisiologia , Temperatura , Animais , Tamanho Corporal , Regulação da Temperatura Corporal , Feminino , Masculino
13.
Zootaxa ; (3815): 507-25, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24943631

RESUMO

Liolaemus is an extremely species rich genus of iguanid lizards from southern South America. Most of the diversity though is found in the Andes Cordillera, between Argentina and Chile. Here we describe Liolaemus ubaghsi sp. nov., from El Teniente Mine, in the Andean mountains of the O'Higgins Region in Chile. This species presents scalation and pattern traits that belong to the leopardinus clade, a group of viviparous, high altitude lizards that inhabit the mountain ranges surrounding Santiago City. The species of this clade in turn belong to the Andean and Patagonian elongatus-kriegi complex. Liolaemus ubaghsi sp. nov. has been previously recognized as L. leopardinus and L. elongatus, nevertheless we present diagnostic traits that allow us to describe it as a new species. It mainly differs from the rest of the leopardinus clade (L. leopardinus, L. ramonensis, L. valdesianus and L. frassinettii) by having the following unique combination of traits: ochre background coloration, a wide dark occipital stripe, dark flanks, white dots dispersed on the dorsum, absence of leopard-like spots and enlarged infralabial scales. 


Assuntos
Lagartos/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Animais , Chile , Feminino , Lagartos/anatomia & histologia , Masculino
14.
Nat Commun ; 15(1): 4966, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862522

RESUMO

Viviparity evolved ~115 times across squamate reptiles, facilitating the colonization of cold habitats, where oviparous species are scarce or absent. Whether the ecological opportunity furnished by such colonization reconfigures phenotypic diversity and accelerates evolution is unclear. We investigated the association between viviparity and patterns and rates of body size evolution in female Liolaemus lizards, the most species-rich tetrapod genus from temperate regions. Here, we discover that viviparous species evolve ~20% larger optimal body sizes than their oviparous relatives, but exhibit similar rates of body size evolution. Through a causal modeling approach, we find that viviparity indirectly influences body size evolution through shifts in thermal environment. Accordingly, the colonization of cold habitats favors larger body sizes in viviparous species, reconfiguring body size diversity in Liolaemus. The catalyzing influence of viviparity on phenotypic evolution arises because it unlocks access to otherwise inaccessible sources of ecological opportunity, an outcome potentially repeated across the tree of life.


Assuntos
Evolução Biológica , Tamanho Corporal , Ecossistema , Lagartos , Viviparidade não Mamífera , Animais , Lagartos/fisiologia , Feminino , Viviparidade não Mamífera/fisiologia , Filogenia , Fenótipo , Oviparidade
15.
Zootaxa ; 3619: 428-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26131484

RESUMO

Most of the lizards of the Liolaemus genus present precloacal pores in males, with few exceptions in species of the lineomaculatus and neuquensis groups, and in the elongatus-kriegi complex. The elongatus-kriegi complex, belonging to the Liolaemus (sensu stricto) subgenus, is composed of medium sized, saxicolous, viviparous and insectivorous or omnivorous lizards, distributed between the Andean and Patagonian zones of Chile and Argentina. We reviewed the taxonomic history of this group, and we describe two new species, Liolaemus carlosgarini, found in the vicinity of the Maule Lagoon, in the Maule Region, Chile, and Liolaemus riodamas, described from the population that was originally designated as Liolaemus cf ceii, from Las Damas River, near the Termas del Flaco locality, in the Libertador Bernardo O'Higgins Region, thereby based on this research L. ceii is eliminated from the species belonging to Chile. Both species have as a diagnostic character the absence of precloacal pores, and we suggest here their presumptive systematic relationships in Liolaemus. We analyzed ten species of Liolaemus, in order to perform a phylogenetic analysis based on external morphology, using mostly squamation and morphometric characters. The analysis was performed using PAUP, with the Maximum Parsimony criterion. In addition, through diaphanisation, we studied and described the osteology of the new species. We conclude that species lacking precloacal pores do not form a monophyletic group, and that constructing a phylogeny using only external morphology, at least for this group of reptiles, is insufficient to establish solid phyletic relationships. Other sort of characters should complement the morphological ones.


Assuntos
Lagartos/anatomia & histologia , Lagartos/classificação , Animais , Chile , Feminino , Masculino , Filogenia , Especificidade da Espécie
16.
Evolution ; 77(12): 2672-2686, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37756495

RESUMO

Mountains are among the most biodiverse regions on the planet, and how these landforms shape diversification through the interaction of biological traits and geo-climatic dynamics is integral to understanding global biodiversity. In this study, we investigate the dual roles of climate change and mountain uplift on the evolution of a hyper-diverse radiation, Liolaemus lizards, with a spatially explicit model of diversification using a reconstruction of uplift and paleotemperature in central and southern South America. The diversification model captures a hotspot for Liolaemus around 40°S in lineages with low-dispersal ability and narrow niche breadths. Under the model, speciation rates are highest in low latitudes (<35°S) and mid elevations (~1,000 m), while extinction rates are highest at higher latitudes (>35°S) and higher elevations (>2,000 m). Temperature change through the Cenozoic explained variation in speciation and extinction rates through time and across different elevational bands. Our results point to the conditions of mid elevations being optimal for diversification (i.e., Goldilocks Zone), driven by the combination of (1) a complex topography that facilitates speciation during periods of climatic change, and (2) a relatively moderate climate that enables the persistence of ectothermic lineages and buffers species from extinction.


Assuntos
Lagartos , Animais , Lagartos/genética , Biodiversidade , América do Sul , Mudança Climática , Filogenia
17.
BMC Ecol Evol ; 22(1): 15, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151266

RESUMO

BACKGROUND: Heterochrony, change in the rate or timing of development, is thought to be one of the main drivers of morphological evolution, and allometry, trait scaling patterns imposed by size, is traditionally thought to represent an evolutionary constraint. However, recent studies suggest that the ontogenetic allometric trajectories describing how organisms change as they grow may be labile and adaptive. Here we investigated the role of postnatal ontogenetic development in the morphological diversification of Paleoanguimorpha, the monitor lizards and allies, a clade with extreme body size disparity. We obtained linear and geometric morphometric data for more than 1,600 specimens belonging to three families and 60 species, representing ~ 72% of extant paleoanguimorph diversity. We used these data to undertake one of the largest comparative studies of ontogenetic allometry to date. RESULTS: Heterochrony is likely dictating morphological divergence at shallow evolutionary scales, while changes in the magnitude and direction of ontogenetic change are found mainly between major clades. Some patterns of ontogenetic variation and morphological disparity appear to reflect ontogenetic transitions in habitat use. Generally, juveniles are more similar to each other than adults, possibly because species that differ in ecology as adults are arboreal as juveniles. The magnitude of ontogenetic change follows evolutionary models where variation is constrained around an optimal value. Conversely, the direction of ontogenetic change may follow models with different adaptive optima per habitat use category or models where interspecific interactions influence its evolution. Finally, we found that the evolutionary rates of the ontogenetic allometric trajectories are phylogenetically variable. CONCLUSIONS: The attributes of ontogenetic allometric trajectories and their evolutionary rates are phylogenetically heterogeneous in Paleoanguimorpha. Both allometric constraints and ecological factors have shaped ontogeny in the group. Our study highlights the evolutionary lability and adaptability of postnatal ontogeny, and teases apart how different evolutionary shifts in ontogeny contribute to the generation of morphological diversity at different evolutionary scales.


Assuntos
Lagartos , Animais , Evolução Biológica , Tamanho Corporal/genética , Crescimento e Desenvolvimento , Humanos , Lagartos/genética , Serpentes
18.
Evolution ; 73(2): 214-230, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30536929

RESUMO

Testing hypotheses on drivers of clade evolution and trait diversification provides insight into many aspects of evolutionary biology. Often, studies investigate only intrinsic biological properties of organisms as the causes of diversity, however, extrinsic properties of a clade's environment, particularly geological history, may also offer compelling explanations. The Andes are a young mountain chain known to have shaped many aspects of climate and diversity of South America. The Liolaemidae are a radiation of South American reptiles with over 300 species found across most biomes and with similar numbers of egg-laying and live-bearing species. Using the most complete dated phylogeny of the family, we tested the role of Andean uplift in biogeography, diversification patterns, and parity mode of the Liolaemidae. We find that the Andes promoted lineage diversification and acted as a species pump into surrounding biomes. We also find strong support for the role of Andean uplift in boosting the species diversity of these lizards via allopatric fragmentation. Finally, we find repeated shifts in parity mode associated with changing thermal niches, with live-bearing favored in cold climates and egg-laying favored in warm climates. Importantly, we find evidence for possible reversals to oviparity, an evolutionary transition believed to be extremely rare.


Assuntos
Altitude , Distribuição Animal , Ecossistema , Especiação Genética , Lagartos/fisiologia , Animais , Feminino , Variação Genética , Oviparidade , Ovoviviparidade , Filogenia , América do Sul
19.
Zool Stud ; 57: e22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31966262

RESUMO

Jaime Troncoso-Palacios, Damien Esquerré, Félix A. Urra, Hugo A. Díaz, Carlos Castro-Pastene, and María Soledad Ruiz (2018) Liolaemus is a particularly species-rich radiation of New World iguanid lizards from southern South America. Thanks to intense systematic and taxonomic research, the knowledge on its species- level diversity has increased rapidly over the past several years. The L. elongatus species-complex has received considerable attention and a remarkable case is Liolaemus chillanensis, a name that has been used for two different species that are sympatric in Termas de Chillán, central Chile. Since the holotype is lost, we propose that the first step to identify the true L. chillanensis is through the analysis of the original description. Then we provide a morphological and molecular characterization of L. chillanensis based on topotypes and a description of the taxon previously confused with it.

20.
Evolution ; 71(12): 2829-2844, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29076160

RESUMO

Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species-rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well-adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes.


Assuntos
Biodiversidade , Evolução Biológica , Crânio/anatomia & histologia , Serpentes/anatomia & histologia , Animais , Modelos Biológicos , Filogenia , Crânio/crescimento & desenvolvimento , Serpentes/classificação , Serpentes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA