Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 94(42): 14659-14665, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219565

RESUMO

The rapid diagnosis of cancer, especially in its early stages, is crucial for on-time medical treatment and for increasing the patient survival rate. Lung cancer shows the highest mortality rate and the lowest 5-year survival rate due to the late diagnosis in advanced cancer stages. Providing rapid and reliable diagnostic tools is a top priority to address the problem of a delayed cancer diagnosis. We introduce a nanophotonic biosensor for the direct and real-time detection in human plasma of the microRNA-21-5p biomarker related to lung cancer. The biosensor employs a silicon photonic bimodal interferometric waveguide that provides a highly sensitive detection in a label-free format. We demonstrate a very competitive detectability for direct microRNA-21-5p biomarker assays in human plasma samples (estimated LOD: 25 pM). The diagnostic capability of our biosensor was validated by analyzing 40 clinical samples from healthy individuals and lung cancer patients, previously analyzed by reverse-transcription quantitative polymerase chain reaction (qRT-PCR). We could successfully identify and quantify the levels of microRNA in a one-step assay, without the need for DNA extraction or amplification steps. The study confirmed the significance of implementing this biosensor technique compared to the benchmarking molecular analysis and showed excellent agreement with previous results employing the traditional qRT-PCR. This work opens new possibilities for the true implementation of point-of-care biosensors that enable fast, simple, and efficient early diagnosis of cancer diseases.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , MicroRNAs , Humanos , Silício , Técnicas Biossensoriais/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/análise , DNA
2.
Anal Chem ; 94(2): 975-984, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34971311

RESUMO

Serological tests are essential for the control and management of COVID-19 pandemic (diagnostics and surveillance, and epidemiological and immunity studies). We introduce a direct serological biosensor assay employing proprietary technology based on plasmonics, which offers rapid (<15 min) identification and quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in clinical samples, without signal amplification. The portable plasmonic device employs a custom-designed multiantigen (RBD peptide and N protein) sensor biochip and reaches detection limits in the low ng mL-1 range employing polyclonal antibodies. It has also been implemented employing the WHO-approved anti-SARS-CoV-2 immunoglobulin standard. A clinical validation with COVID-19 positive and negative samples (n = 120) demonstrates its excellent diagnostic sensitivity (99%) and specificity (100%). This positions our biosensor as an accurate and easy-to-use diagnostics tool for rapid and reliable COVID-19 serology to be employed both at laboratory and decentralized settings for the disease management and for the evaluation of immunological status during vaccination or treatment.


Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Antivirais , Humanos , Pandemias , SARS-CoV-2 , Sensibilidade e Especificidade
3.
ACS Sens ; 5(9): 2663-2678, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32786383

RESUMO

The global sanitary crisis caused by the emergence of the respiratory virus SARS-CoV-2 and the COVID-19 outbreak has revealed the urgent need for rapid, accurate, and affordable diagnostic tests to broadly and massively monitor the population in order to properly manage and control the spread of the pandemic. Current diagnostic techniques essentially rely on polymerase chain reaction (PCR) tests, which provide the required sensitivity and specificity. However, its relatively long time-to-result, including sample transport to a specialized laboratory, delays massive detection. Rapid lateral flow tests (both antigen and serological tests) are a remarkable alternative for rapid point-of-care diagnostics, but they exhibit critical limitations as they do not always achieve the required sensitivity for reliable diagnostics and surveillance. Next-generation diagnostic tools capable of overcoming all the above limitations are in demand, and optical biosensors are an excellent option to surpass such critical issues. Label-free nanophotonic biosensors offer high sensitivity and operational robustness with an enormous potential for integration in compact autonomous devices to be delivered out-of-the-lab at the point-of-care (POC). Taking the current COVID-19 pandemic as a critical case scenario, we provide an overview of the diagnostic techniques for respiratory viruses and analyze how nanophotonic biosensors can contribute to improving such diagnostics. We review the ongoing published work using this biosensor technology for intact virus detection, nucleic acid detection or serological tests, and the key factors for bringing nanophotonic POC biosensors to accurate and effective COVID-19 diagnosis on the short term.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico , Nanoestruturas/química , Pneumonia Viral/diagnóstico , Ressonância de Plasmônio de Superfície/métodos , Antígenos Virais/análise , Betacoronavirus/química , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Genoma Viral , Humanos , Imunoensaio/métodos , Nanoestruturas/efeitos da radiação , Pandemias , SARS-CoV-2 , Testes Sorológicos/métodos
4.
ACS Infect Dis ; 6(5): 1110-1120, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32233503

RESUMO

Advancements that occurred during the last years in the diagnosis of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis infection, have prompted increased survival rates of patients. However, limitations related to the inefficiency of an early detection still remain; some techniques and laboratory methods do not have enough specificity and most instruments are expensive and require handling by trained staff. In order to contribute to a prompt and effective diagnosis of tuberculosis, we report the development of a portable, user-friendly, and low-cost biosensor device for its early detection. By using a label-free surface plasmon resonance (SPR) biosensor, we have established a direct immunoassay for the direct detection and quantification of the heat shock protein X (HspX) of Mtb, a well-established biomarker of this pathogen, directly in pretreated sputum samples. The method relies on highly specific monoclonal antibodies that are previously immobilized on the plasmonic sensor surface. This technology allows for the direct detection of the biomarker without amplification steps, showing a limit of detection (LOD) of 0.63 ng mL-1 and a limit of quantification (LOQ) of 2.12 ng mL-1. The direct analysis in pretreated sputum shows significant differences in the HspX concentration in patients with tuberculosis (with concentration levels in the order of 116-175 ng mL-1) compared with non-tuberculosis infected patients (values below the LOQ of the assay).


Assuntos
Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Escarro/microbiologia , Tuberculose , Humanos , Limite de Detecção , Mycobacterium tuberculosis , Sistemas Automatizados de Assistência Junto ao Leito , Tuberculose/diagnóstico
5.
ACS Sens ; 4(1): 52-60, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30525470

RESUMO

Existing clinical methods for bacteria detection lack speed, sensitivity, and, importantly, point-of-care (PoC) applicability. Thus, finding ways to push the sensitivity of clinical PoC biosensing technologies is crucial. Here we report a portable PoC device based on lens-free interferometric microscopy (LIM). The device employs high performance nanoplasmonics and custom bioprinted microarrays and is capable of direct label-free bacteria ( E. coli) quantification. With only one-step sample handling we offer a sample-to-data turnaround time of 40 min. Our technology features detection sensitivity of a single bacterial cell both in buffer and in diluted blood plasma and is intrinsically limited by the number of cells present in the detection volume. When employed in a hospital setting, the device has enabled accurate categorization of sepsis patients (infectious SIRS) from control groups (healthy individuals and noninfectious SIRS patients) without false positives/negatives. User-friendly on-site bacterial clinical diagnosis can thus become a reality.


Assuntos
Técnicas Bacteriológicas/métodos , Sangue/microbiologia , Escherichia coli/isolamento & purificação , Interferometria/métodos , Microscopia/métodos , Testes Imediatos , Adsorção , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Carga Bacteriana/instrumentação , Carga Bacteriana/métodos , Proteínas de Bactérias/química , Técnicas Bacteriológicas/instrumentação , Bioimpressão , Escherichia coli/imunologia , Ouro/química , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Interferometria/instrumentação , Microscopia/instrumentação , Nanoestruturas/química , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Sepse/sangue , Sepse/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA