Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1266527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111711

RESUMO

Hepatocyte Nuclear Factor 4α (HNF4α), a master regulator of hepatocyte differentiation, is regulated by two promoters (P1 and P2) which drive the expression of different isoforms. P1-HNF4α is the major isoform in the adult liver while P2-HNF4α is thought to be expressed only in fetal liver and liver cancer. Here, we show that P2-HNF4α is indeed expressed in the normal adult liver at Zeitgeber time (ZT)9 and ZT21. Using exon swap mice that express only P2-HNF4α we show that this isoform orchestrates a distinct transcriptome and metabolome via unique chromatin and protein-protein interactions, including with different clock proteins at different times of the day leading to subtle differences in circadian gene regulation. Furthermore, deletion of the Clock gene alters the circadian oscillation of P2- (but not P1-)HNF4α RNA, revealing a complex feedback loop between the HNF4α isoforms and the hepatic clock. Finally, we demonstrate that while P1-HNF4α drives gluconeogenesis, P2-HNF4α drives ketogenesis and is required for elevated levels of ketone bodies in female mice. Taken together, we propose that the highly conserved two-promoter structure of the Hnf4a gene is an evolutionarily conserved mechanism to maintain the balance between gluconeogenesis and ketogenesis in the liver in a circadian fashion.


Assuntos
Fator 4 Nuclear de Hepatócito , Metabolismo dos Lipídeos , Animais , Feminino , Camundongos , Carboidratos , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Hepatology ; 51(2): 642-53, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20054869

RESUMO

UNLABELLED: Hepatocyte nuclear factor 4 alpha (HNF4alpha), a member of the nuclear receptor superfamily, is essential for liver function and is linked to several diseases including diabetes, hemophilia, atherosclerosis, and hepatitis. Although many DNA response elements and target genes have been identified for HNF4alpha, the complete repertoire of binding sites and target genes in the human genome is unknown. Here, we adapt protein binding microarrays (PBMs) to examine the DNA-binding characteristics of two HNF4alpha species (rat and human) and isoforms (HNF4alpha2 and HNF4alpha8) in a high-throughput fashion. We identified approximately 1400 new binding sequences and used this dataset to successfully train a Support Vector Machine (SVM) model that predicts an additional approximately 10,000 unique HNF4alpha-binding sequences; we also identify new rules for HNF4alpha DNA binding. We performed expression profiling of an HNF4alpha RNA interference knockdown in HepG2 cells and compared the results to a search of the promoters of all human genes with the PBM and SVM models, as well as published genome-wide location analysis. Using this integrated approach, we identified approximately 240 new direct HNF4alpha human target genes, including new functional categories of genes not typically associated with HNF4alpha, such as cell cycle, immune function, apoptosis, stress response, and other cancer-related genes. CONCLUSION: We report the first use of PBMs with a full-length liver-enriched transcription factor and greatly expand the repertoire of HNF4alpha-binding sequences and target genes, thereby identifying new functions for HNF4alpha. We also establish a web-based tool, HNF4 Motif Finder, that can be used to identify potential HNF4alpha-binding sites in any sequence.


Assuntos
Fator 4 Nuclear de Hepatócito/genética , Análise Serial de Proteínas , Animais , Humanos , Fígado/citologia , Ratos
3.
Endocrinology ; 161(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912136

RESUMO

Soybean oil consumption has increased greatly in the past half-century and is linked to obesity and diabetes. To test the hypothesis that soybean oil diet alters hypothalamic gene expression in conjunction with metabolic phenotype, we performed RNA sequencing analysis using male mice fed isocaloric, high-fat diets based on conventional soybean oil (high in linoleic acid, LA), a genetically modified, low-LA soybean oil (Plenish), and coconut oil (high in saturated fat, containing no LA). The 2 soybean oil diets had similar but nonidentical effects on the hypothalamic transcriptome, whereas the coconut oil diet had a negligible effect compared to a low-fat control diet. Dysregulated genes were associated with inflammation, neuroendocrine, neurochemical, and insulin signaling. Oxt was the only gene with metabolic, inflammation, and neurological relevance upregulated by both soybean oil diets compared to both control diets. Oxytocin immunoreactivity in the supraoptic and paraventricular nuclei of the hypothalamus was reduced, whereas plasma oxytocin and hypothalamic Oxt were increased. These central and peripheral effects of soybean oil diets were correlated with glucose intolerance but not body weight. Alterations in hypothalamic Oxt and plasma oxytocin were not observed in the coconut oil diet enriched in stigmasterol, a phytosterol found in soybean oil. We postulate that neither stigmasterol nor LA is responsible for effects of soybean oil diets on oxytocin and that Oxt messenger RNA levels could be associated with the diabetic state. Given the ubiquitous presence of soybean oil in the American diet, its observed effects on hypothalamic gene expression could have important public health ramifications.


Assuntos
Diabetes Mellitus/etiologia , Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Ocitocina/sangue , Óleo de Soja/efeitos adversos , Animais , Inflamação/etiologia , Ácido Linoleico/efeitos adversos , Masculino , Camundongos , Doenças do Sistema Nervoso/etiologia , Obesidade/etiologia , Estigmasterol/efeitos adversos
4.
Sci Rep ; 7(1): 12488, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970503

RESUMO

Soybean oil consumption is increasing worldwide and parallels a rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance, and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6 male mice. Proteomic analysis of the liver reveals global differences in hepatic proteins when comparing diets rich in the two soybean oils, coconut oil, and a low-fat diet. Metabolomic analysis of the liver and plasma shows a positive correlation between obesity and hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway. While Plenish induced less insulin resistance than conventional soybean oil, it resulted in hepatomegaly and liver dysfunction as did olive oil, which has a similar fatty acid composition. These results implicate a new class of compounds in diet-induced obesity-C18 epoxide and diol oxylipins.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Hepatomegalia/etiologia , Obesidade/etiologia , Oxilipinas/metabolismo , Óleo de Soja/efeitos adversos , Animais , Óleo de Coco/administração & dosagem , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dieta com Restrição de Gorduras/métodos , Gorduras na Dieta/efeitos adversos , Ácidos Graxos Ômega-3/classificação , Ácidos Graxos Ômega-6/classificação , Perfilação da Expressão Gênica , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metaboloma/genética , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Oxilipinas/classificação , Proteoma/genética , Proteoma/metabolismo
5.
Elife ; 52016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27166517

RESUMO

HNF4α has been implicated in colitis and colon cancer in humans but the role of the different HNF4α isoforms expressed from the two different promoters (P1 and P2) active in the colon is not clear. Here, we show that P1-HNF4α is expressed primarily in the differentiated compartment of the mouse colonic crypt and P2-HNF4α in the proliferative compartment. Exon swap mice that express only P1- or only P2-HNF4α have different colonic gene expression profiles, interacting proteins, cellular migration, ion transport and epithelial barrier function. The mice also exhibit altered susceptibilities to experimental colitis (DSS) and colitis-associated colon cancer (AOM+DSS). When P2-HNF4α-only mice (which have elevated levels of the cytokine resistin-like ß, RELMß, and are extremely sensitive to DSS) are crossed with Retnlb(-/-) mice, they are rescued from mortality. Furthermore, P2-HNF4α binds and preferentially activates the RELMß promoter. In summary, HNF4α isoforms perform non-redundant functions in the colon under conditions of stress, underscoring the importance of tracking them both in colitis and colon cancer.


Assuntos
Colite/patologia , Neoplasias do Colo/patologia , Fator 4 Nuclear de Hepatócito/análise , Isoformas de Proteínas/análise , Animais , Colite/complicações , Modelos Animais de Doenças , Camundongos
6.
PLoS One ; 10(7): e0132672, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26200659

RESUMO

The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.


Assuntos
Diabetes Mellitus/etiologia , Frutose/efeitos adversos , Fígado/efeitos dos fármacos , Obesidade/etiologia , Óleos de Plantas/efeitos adversos , Óleo de Soja/efeitos adversos , Animais , Óleo de Coco , Sistema Enzimático do Citocromo P-450/genética , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Gorduras na Dieta/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Obesidade/epidemiologia , Obesidade/genética
7.
PLoS One ; 4(5): e5609, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19440305

RESUMO

Orphan nuclear receptors have been instrumental in identifying novel signaling pathways and therapeutic targets. However, identification of ligands for these receptors has often been based on random compound screens or other biased approaches. As a result, it remains unclear in many cases if the reported ligands are the true endogenous ligands,--i.e., the ligand that is bound to the receptor in an unperturbed in vivo setting. Technical limitations have limited our ability to identify ligands based on this rigorous definition. The orphan receptor hepatocyte nuclear factor 4 alpha (HNF4alpha) is a key regulator of many metabolic pathways and linked to several diseases including diabetes, atherosclerosis, hemophilia and cancer. Here we utilize an affinity isolation/mass-spectrometry (AIMS) approach to demonstrate that HNF4alpha is selectively occupied by linoleic acid (LA, C18:2omega6) in mammalian cells and in the liver of fed mice. Receptor occupancy is dramatically reduced in the fasted state and in a receptor carrying a mutation derived from patients with Maturity Onset Diabetes of the Young 1 (MODY1). Interestingly, however, ligand occupancy does not appear to have a significant effect on HNF4alpha transcriptional activity, as evidenced by genome-wide expression profiling in cells derived from human colon. We also use AIMS to show that LA binding is reversible in intact cells, indicating that HNF4alpha could be a viable drug target. This study establishes a general method to identify true endogenous ligands for nuclear receptors (and other lipid binding proteins), independent of transcriptional function, and to track in vivo receptor occupancy under physiologically relevant conditions.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Ácido Linoleico/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Ligação Proteica/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA