Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Ecol ; 14: 1, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24438134

RESUMO

BACKGROUND: Plant biodiversity can affect trophic interactions in many ways, including direct bottom-up effects on insects, but is negatively affected by agricultural intensification. Grassland intensification promotes plant productivity, resulting in changes in plant community composition, and impacts on higher trophic levels. Here, we use a novel grassland management experiment combining manipulations of cutting and fertilization with experimental changes in plant functional group composition (independent of management effects) to disentangle the direct and indirect effects of agricultural management on insect herbivore diversity and abundance. We used leafhoppers as model organisms as they are a key insect taxon in grasslands and react rapidly to management changes. Leafhoppers were sampled between May and September 2010 using standardized sweep netting and pan traps. RESULTS: Plant diversity, functional group composition and management regime in grasslands affected leafhopper species richness and abundance. Higher cutting frequencies directly led to decreasing leafhopper species richness, presumably due to the higher disturbance frequency and the reduction in food-resource heterogeneity. In contrast, fertilizer application had only a small indirect negative effect via enhanced aboveground plant biomass, reduced plant diversity and changes in functional group composition. The manipulated increase in grass cover had contrasting direct and indirect effects on leafhopper species richness: grass cover directly increased leafhopper species richness, but negatively affected plant diversity, which in turn was positively related to leafhopper species richness. In conclusion, insect diversity is driven in complex direct and indirect ways by grassland management, including changes in functional group composition. CONCLUSIONS: The availability of preferred food sources and the frequency of disturbance are important direct and indirect drivers of leafhopper species richness, interacting in complex ways with plant diversity and food resource heterogeneity.


Assuntos
Agricultura/métodos , Biodiversidade , Hemípteros/classificação , Poaceae/classificação , Animais , Ecossistema , Feminino , Fertilizantes , Alemanha , Herbivoria , Masculino , Modelos Biológicos
2.
Am Nat ; 181 Suppl 1: S21-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23598357

RESUMO

Herbivores are credited with driving the evolutionary diversification of plant defensive strategies over macroevolutionary time. For this to be true, herbivores must also cause short-term evolution within plant populations, but few studies have experimentally tested this prediction. We addressed this gap using a long-term manipulative field experiment where exclosures protected 22 plant populations from natural rabbit herbivory for <1 to 26 years. We collected seeds of Rumex acetosa L. (Polygonaceae) from our plots and grew them in a common greenhouse environment to quantify evolved differences among populations in individual plant growth rate, tolerance to herbivory, competitive ability, and the concentration of secondary metabolites (tannins and oxalate) implicated in defense against herbivores. In 26 years without rabbit herbivory, plant growth rate decreased linearly by 30%. We argue that plant growth rate has evolved as a defense against intense rabbit herbivory. In contrast, we found no change in tolerance to herbivory or concentrations of secondary metabolites. We also found no change in competitive ability, suggesting that contemporary evolution may not feed back to alter ecological interactions within this plant community. Our results combined with those of other studies show that the evolution of gross morphological traits such as growth rate in response to herbivory may be common, which calls into question assumptions about some of the most popular theories of plant defense.


Assuntos
Evolução Biológica , Herbivoria , Rumex/crescimento & desenvolvimento , Rumex/genética , Animais , Oxalatos/metabolismo , Coelhos , Rumex/fisiologia , Taninos/metabolismo
3.
PLoS One ; 8(2): e57027, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437300

RESUMO

Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species, and that maintaining the presence of key functional groups should be a crucial consideration in future grassland management.


Assuntos
Ecossistema , Poaceae , Chuva , Solo , Dióxido de Carbono/análise , Inglaterra , Fotossíntese , Poaceae/fisiologia , Estações do Ano , Solo/análise , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA