Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 332: 118364, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38763368

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SBG), a widely used traditional Chinese medicine, exhibits anti-inflammatory and antioxidant properties. Wogonin is one of the primary bioactive components of SBG. Acetaminophen (APAP)-induced liver injury (AILI) represents a prevalent form of drug-induced liver damage and is primarily driven by inflammatory responses and oxidative stress. AIM OF STUDY: To investigate the therapeutic effects of Wogonin on AILI and the underlying mechanisms. MATERIALS AND METHODS: C57BL/6 J mice were pre-treated with Wogonin (1, 2.5, and 5 mg/kg bodyweight) for 3 days, followed by treatment with APAP (300 mg/kg bodyweight). The serum and liver tissue samples were collected at 24 h post-APAP treatment. Bone marrow-derived macrophages and RAW264.7 cells were cultured and pre-treated with Wogonin (5, 10, and 20 µM) for 30 min, followed by stimulation with lipopolysaccharide (LPS; 100 ng/mL) for 3 h. To examine the role of the PI3K/AKT signaling pathway in the therapeutic effect of Wogonin on AILI, mice and cells were treated with LY294002 (a PI3K inhibitor) and MK2206 (an AKT inhibitor). RESULTS: Wogonin pre-treatment dose-dependently alleviated AILI in mice. Additionally, Wogonin suppressed oxidative stress and inflammatory responses. Liver transcriptome analysis indicated that Wogonin primarily regulates immune function and cytokines in AILI. Wogonin suppressed inflammatory responses of macrophages by inhibiting the PI3K/AKT signaling pathway. Consistently, Wogonin exerted therapeutic effects on AILI in mice through the PI3K/AKT signaling pathway. CONCLUSIONS: Wogonin alleviated AILI and APAP-induced hepatotoxicity in mice through the PI3K/AKT signaling pathway.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Flavanonas , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Acetaminofen/toxicidade , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Células RAW 264.7 , Fosfatidilinositol 3-Quinases/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Scutellaria baicalensis/química
2.
J Gastrointest Oncol ; 14(4): 1770-1787, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37720432

RESUMO

Background: Non-alcoholic fatty liver disease (NAFLD) is the global most common chronic liver disease. Non-alcoholic steatohepatitis (NASH), an inflammatory subtype of NAFLD, has been shown to significantly increase the risk of colorectal adenoma (CRA). Therefore, from the perspective of bioinformatics analysis, the potential mechanisms of NASH/NAFLD-CRA can be explored. Methods: In this study, we screened the differentially expressed genes (DEGs) and core effect pathways between NASH and CRA by analyzing the single-cell data of CRA patients and the high-throughput sequencing data (GSE37364 and GSE89632) in the online database. We screened therapeutic targets and biomarkers through gene function classification, pathway enrichment analysis, and protein-protein interaction network analysis. In terms of single cell data, we screened the core effect pathway and specific signal pathway of cell communication through cell annotation and cell communication analyses. The purpose of the study was to find potential biomarkers, therapeutic targets, and related effect pathways of NASH-CRA. Results: NASH-CRA comorbidities were concentrated in inflammatory regulation-related pathways, and the core genes of disease progression included IL1B, FOSL1, EGR1, MYC, PTGS2, and FOS. The results suggested the key pathway of NASH-CRA might be the WNT pathway. The main cell signal communication pathways included WNT2B - (FZD6 + LRP5) and WNT2B - (FZD6 + LRP6). The send-receive process occurred in embryonic stem cells. Conclusions: The core genes of NASH-CRA (FOS, EGR1, MYC, PTGS2, FOSL1, and IL1B) may participate in inflammation and immune responses through up-regulation in the process of disease occurrence, interfering with the pathophysiological process of CRA and NASH. NASH-CRA produces cell signal communication in the WNT pathway sent by WNT2B and received by FZD6, LRP5, and LRP6 in embryonic stem cells. These findings may help formulate early diagnosis and treatment strategies for CRA in NAFLD/NASH patients, and further explore corresponding prognostic markers and potential approaches. The significance of scRNA-seq in exploring tumor heterogeneity lies in promoting our understanding of the expression program of tumor related genes in tumor development patterns. However, the biggest challenge is that this analysis may miss out on some biologically significant gene expression programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA