Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 69(5): 1376-1383, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30882299

RESUMO

Three strains of a Gram-stain negative bacterium were isolated from Lake Michigan water. 16S rRNA gene sequence analysis revealed that strain 1131 had sequence similarities to Bosea vaviloviae LMG 28367T, Bosea lathyri LMG 26379T, Bosea lupini LMG 26383T, Bosea eneae CCUG 43111T, Bosea vestrisii CCUG 43114T and Boseamassiliensis CCUG 43117T of 99.8, 99.1, 98.4, 98.4, 98.4 and 98.2 %, respectively. The average nucleotide identity value between strain 1131T and Bosea vaviloviae Vaf-18T was 93.4 % and the DNA relatedness was 38 %. The primary cellular fatty acids of strain 1131T were C16 : 1ω7c and C18 : 1ω7c. The primary polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The major compound in the quinone system was ubiquinone Q-10 and in the polyamine pattern sym-homospermidine was predominant. Additional phenotypic characteristics included growth at 5-35 °C, pH values of pH 5.5-8.0, a salt tolerance range of 0.0-1.2 % (w/v), and production of an unknown water soluble brown pigment. After phenotypic, chemotaxonomic and genomic analyses, this isolate was identified as a novel species for which the name Bosea psychrotolerans is proposed. The type strain is 1131T (NRRL B-65405=LMG 30034).


Assuntos
Bradyrhizobiaceae/classificação , Lagos/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Michigan , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/análogos & derivados , Espermidina/química , Ubiquinona/química
2.
Int J Syst Evol Microbiol ; 65(Pt 3): 1083-1085, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25574035

RESUMO

Two species of the genus Deinococcus, namely Deinococcus wulumuqiensis Wang et al. 2010 and Deinococcus xibeiensis Wang et al. 2010, were simultaneously proposed and described in the same publication. However, the identical 16S rRNA gene sequence of the two type strains strongly raised the probability of their relatedness at the species level. Thus, the genomic relatedness of the two species of the genus Deinococcus was investigated here to clarify their taxonomic status. The high (99.9 %) average nucleotide identity (ANI) between the genome sequences of the two type strains suggested that the two species are synonymous. Additional phenotypic data including enzymic activities and substrate-utilization profiles showed no pronounced differences between the type strains of the two species. Data from this study demonstrated that the two taxa constitute a single species. According to Rule 42 of the Bacteriological Code, we propose that D. xibeiensis Wang et al. 2010 should be reclassified as a subjective heterotypic synonym of D. wulumuqiensis Wang et al. 2010.


Assuntos
Deinococcus/classificação , Filogenia , DNA Bacteriano/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Int J Syst Evol Microbiol ; 65(12): 4309-4314, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26341781

RESUMO

A Gram-stain-negative, non-motile and yellow-pigmented bacterium, designated HME8275T, was isolated from freshwater in Korea. The major fatty acids of strain HME8275T were summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and iso-C15 : 0. The only respiratory quinone was MK-7. Polar lipid analysis showed phosphatidylethanolamine, two unidentified aminolipids, two unidentified aminophospholipids and three unidentified polar lipids. The DNA G+C content of strain HME8275T was 37.6 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HME8275T formed a lineage within the family Cytophagaceae and was related to Lacihabitans soyangensis HME6675T (92.6 % 16S rRNA gene sequence similarity), Leadbetterella byssophila 4M15T (89.0 %), Fluviimonas pallidilutea TQQ6T (89.7 %) and Emticicia oligotrophica GPTSA100-15T (89.8 %). On the basis of the evidence presented in this study, strain HME8275T represents a novel species of a new genus in the family Cytophagaceae, for which the name Taeseokella kangwonensis, gen. nov., sp. nov. is proposed. The type strain of the type species is HME8275T ( = KACC 16933T = CECT 8198T).


Assuntos
Cytophagaceae/classificação , Água Doce/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/genética , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
4.
Curr Microbiol ; 66(1): 72-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23053492

RESUMO

Isolate W14(T) recovered from a household tooth brush holder was found to be gram-negative, a facultative anaerobic, non-motile, capsulated, and a non-endospore-forming straight rod. Based on phylogenetic analysis with 16S rRNA gene sequence, isolate W14(T) was affiliated to the genus Klebsiella. The closest phylogenetic relative was K. oxytoca with 99 % similarity in the 16S rRNA gene sequence. The major whole-cell fatty acids were C(16:0) (31.23 %), C(18:1ω6c)/C(18:1ω7c) (21.10 %), and C(16:1ω7c)/C(16:1ω6c) (19.05 %). The sequence similarities of isolate W14(T) based on rpoB, gyrA, and gyrB were 97, 98, and 98 % with K. oxytoca, and 97, 93, and 90 % with K. mobilis (=Enterobacter aerogenes), respectively. The ribotyping pattern showed a 0.46 similarity with K. oxytoca ATCC 13182(T) and 0.24 with K. mobilis ATCC 13048(T). The DNA G+C content of isolate W14(T) was 54.6 mol%. The DNA-DNA relatedness was 55.7 % with K. oxytoca ATCC 13182(T). Using the identification technology of MALDI-TOF mass spectrometry, the top matches for this isolate were K. oxytoca ATCC 13182(T) (Match Factor Score 1.998) and K. mobilis (Score 1.797). On the basis of phenotypic, biochemical, chemotaxonomic, and molecular studies, isolate W14(T) could be differentiated from other members of the genus Klebsiella including K. mobilis. Therefore, it is proposed that isolate W14(T) (=ATCC BAA-2403(T)=DSM 25444(T)) should be classified as the type strain of a novel species of the genus Klebsiella, K. michiganensis sp. nov.


Assuntos
Microbiologia Ambiental , Klebsiella/classificação , Klebsiella/isolamento & purificação , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Humanos , Klebsiella/genética , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Plant Biotechnol J ; 10(7): 773-82, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22520228

RESUMO

Application of tools of molecular biology and genomics is increasingly leading towards the development of recombinant protein-based biologics. As such, it is leading to an increased diversity of targets that have important health applications and require more flexible approaches for expression because of complex post-translational modifications. For example, Plasmodium parasites may have complex post-translationally modified proteins such as Pfs48/45 that do not carry N-linked glycans (Exp. Parasitol. 1998; 90, 165.) but contain potential N-linked glycosylation sites that can be aberrantly glycosylated during expression in mammalian and plant systems. Therefore, it is important to develop strategies for producing non-glycosylated forms of these targets to preserve biological activity and native conformation. In this study, we are describing in vivo deglycosylation of recombinant N-glycosylated proteins as a result of their transient co-expression with bacterial PNGase F (Peptide: N-glycosidase F). In addition, we show that the recognition of an in vivo deglycosylated plant-produced malaria vaccine candidate, Pfs48F1, by monoclonal antibodies I, III and V raised against various epitopes (I, III and V) of native Pfs48/45 of Plasmodium falciparum, was significantly stronger compared to that of the glycosylated form of plant-produced Pfs48F1. To our knowledge, neither in vivo enzymatic protein deglycosylation has been previously achieved in any eukaryotic system, including plants, nor has bacterial PNGase F been expressed in the plant system. Thus, here, we report for the first time the expression in plants of an active bacterial enzyme PNGase F and the production of recombinant proteins of interest in a non-glycosylated form.


Assuntos
Bactérias/enzimologia , Biotecnologia/métodos , Nicotiana/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Proteínas Recombinantes/biossíntese , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Glicosilação , Espectrometria de Massas , Mapeamento de Peptídeos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/isolamento & purificação , Plantas Geneticamente Modificadas , Plasmodium falciparum/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Solubilidade
6.
Hum Vaccin ; 7 Suppl: 199-204, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21922687

RESUMO

H5N1 avian influenza continues to be a potential pandemic threat. Several vaccine candidates based on potentially pandemic influenza strains and antiviral drugs have been tested in preclinical and clinical studies. The data obtained so far have shown some promise, but have also revealed some shortcomings with both of these approaches. We have identified and characterized an H5N1 neuraminidasespecific monoclonal antibody which specifically inhibits N1 neuraminidase activity of highly pathogenic avian influenza (HPAI) strains from clades 1 and 2. We have also shown the protective efficacy of this antibody in animal challenge models using homologous virus. Specific and effective inhibition of N1 NA could make this mAb a useful therapeutic tool in the treatment of human infection, in particular with oseltamivirand zanamivir-resistant strains of HPAI.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Peso Corporal , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Doenças dos Roedores/prevenção & controle , Análise de Sobrevida
7.
Hum Vaccin ; 7 Suppl: 191-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21266847

RESUMO

Malaria is a serious and sometimes fatal mosquito-borne disease caused by a protozoan parasite. Each year, it is estimated that over one million people are killed by malaria, yet the disease is preventable and treatable. Developing vaccines against the parasite is a critical component in the fight against malaria and these vaccines can target different stages of the pathogen's life cycle. We are targeting sexual stage proteins of P. falciparum which are found on the surface of the parasite reproductive cells present in the mosquito gut. Antibodies against these proteins block the progression of the parasite's life cycle in the mosquito, and thus block transmission to the next human host. Transmission blocking vaccines are essential to the malaria eradication program to ease the disease burden at the population level. We have successfully produced multiple versions of the Pfs25 antigen in a plant virus-based transient expression system and have evaluated these vaccine candidates in an animal model. The targets are expressed in plants at a high level, are soluble and most importantly, generate strong transmission blocking activity as determined by a standard membrane feeding assay. These data demonstrate the feasibility of expressing Plasmodium antigens in a plant-based system for the economic production of a transmission blocking vaccine against malaria.


Assuntos
Anticorpos Antiprotozoários/imunologia , Transmissão de Doença Infecciosa/prevenção & controle , Vacinas Antimaláricas/imunologia , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Culicidae/parasitologia , Culicidae/fisiologia , Comportamento Alimentar , Vacinas Antimaláricas/administração & dosagem , Camundongos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Nicotiana
8.
Environ Sci Process Impacts ; 23(11): 1681-1687, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34596193

RESUMO

Indoor flooding is a leading contributor to indoor dampness and the associated mold infestations in the coastal United States. Whether the prevalent mold genera that infest the coastal flood-prone buildings are different from those not flood-prone is unknown. In the current case study of 28 mold-infested buildings across the U.S. east coast, we surprisingly noted a trend of higher prevalence of indoor Aspergillus and Penicillium genera (denoted here as Asp-Pen) in buildings with previous flooding history. Hence, we sought to determine the possibility of a potential statistically significant association between indoor Asp-Pen prevalence and three building-related variables: (i) indoor flooding history, (ii) geographical location, and (iii) the building's use (residential versus non-residential). Culturable spores and hyphal fragments in indoor air were collected using the settle-plate method, and corresponding genera were confirmed using phylogenetic analysis of their ITS sequence (the fungal barcode). Analysis of variance (ANOVA) using Generalized linear model procedure (GLM) showed that Asp-Pen prevalence is significantly associated with indoor flooding as well as coastal proximity. To address the small sample size, a multivariate decision tree analysis was conducted, which ranked indoor flooding history as the strongest determinant of Asp-Pen prevalence, followed by geographical location and the building's use.


Assuntos
Poluição do Ar em Ambientes Fechados , Penicillium , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Aspergillus , Inundações , Fungos , Filogenia , Prevalência
9.
Sci Rep ; 10(1): 21536, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299017

RESUMO

Rapid infection diagnosis is critical to improving patient treatment and outcome. Recent studies have shown microbial lipids to be sensitive and selective biomarkers for identifying bacterial and fungal species and antimicrobial resistance. Practical procedures for microbial lipid biomarker analysis will therefore improve patient outcomes and antimicrobial stewardship. However, current lipid extraction methods require significant hands-on time and are thus not suited for direct adoption as a clinical assay for microbial identification. Here, we have developed a method for lipid extraction directly on the surface of stainless-steel matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) plates, termed fast lipid analysis technique or FLAT, which facilitates the identification of bacterial and fungal species using a sub-60-minute workflow. Additionally, our method detects lipid A modifications in Gram-negative bacteria that are associated with antimicrobial resistance, including to colistin.


Assuntos
Colistina , Farmacorresistência Bacteriana , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Biomarcadores/análise , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/metabolismo
10.
Biologicals ; 36(6): 354-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18938088

RESUMO

Cell substrates are a key component of successful vaccine development and throughout the last several decades there has been a dramatic increase in the types of cells available for vaccine production. Nevertheless, there is a continued demand for new and innovative approaches for vaccine development and manufacturing. Recent developments involving cells of insect and plant origin are attracting considerable scientific interest. Here we review vaccine antigen production in plant-based systems as was presented by Dr. Vidadi Yusibov of Fraunhofer USA Center for Molecular Biotechnology at the IABS International Scientific Workshop on NEW CELLS FOR NEW VACCINES II that was held in Wilmington, Delaware on September 17-19, 2007.


Assuntos
Plantas/metabolismo , Vacinas de Subunidades Antigênicas/biossíntese , Vacinas Sintéticas/biossíntese , Virologia/tendências , Animais , Animais Geneticamente Modificados , Antígenos Virais/química , Bactérias/metabolismo , Fungos/metabolismo , Vetores Genéticos , Humanos , Insetos , Plantas/genética , Plantas Geneticamente Modificadas , Estados Unidos , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/economia , Vacinas de Subunidades Antigênicas/genética , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/economia , Vacinas Sintéticas/genética , Vacinas Virais/química , Virologia/métodos
11.
Influenza Other Respir Viruses ; 6(3): 204-10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21974811

RESUMO

BACKGROUND: Influenza virus is a globally important respiratory pathogen that causes a high degree of annual morbidity and mortality. Significant antigenic drift results in emergence of new, potentially pandemic, virus variants. The best prophylactic option for controlling emerging virus strains is to manufacture and administer pandemic vaccines in sufficient quantities and to do so in a timely manner without impacting the regular seasonal influenza vaccine capacity. Current, egg-based, influenza vaccine production is well established and provides an effective product, but has limited capacity and speed. OBJECTIVES: To satisfy the additional global demand for emerging influenza vaccines, high-performance cost-effective technologies need to be developed. Plants have a potential as an economic and efficient large-scale production platform for vaccine antigens. METHODS: In this study, a plant virus-based transient expression system was used to produce hemagglutinin (HA) proteins from the three vaccine strains used during the 2008-2009 influenza season, A/Brisbane/59/07 (H1N1), A/Brisbane/10/07 (H3N2), and B/Florida/4/06, as well as from the recently emerged novel H1N1 influenza A virus, A/California/04/09. RESULTS: The recombinant plant-based HA proteins were engineered and produced in Nicotiana benthamiana plants within 2 months of obtaining the genetic sequences specific to each virus strain. These antigens expressed at the rate of 400-1300 mg/kg of fresh leaf tissue, with >70% solubility. Immunization of mice with these HA antigens induced serum anti-HA IgG and hemagglutination inhibition antibody responses at the levels considered protective against these virus infections. CONCLUSIONS: These results demonstrate the feasibility of our transient plant expression system for the rapid production of influenza vaccine antigens.


Assuntos
Antígenos Virais/genética , Expressão Gênica , Vacinas contra Influenza/genética , Influenza Humana/imunologia , Nicotiana/genética , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Nicotiana/metabolismo
12.
Clin Vaccine Immunol ; 18(8): 1351-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21715576

RESUMO

Plasmodium falciparum is transmitted to a new host after completing its sexual cycle within a mosquito. Developing vaccines against the parasite sexual stages is a critical component in the fight against malaria. We are targeting multiple proteins of P. falciparum which are found only on the surfaces of the sexual forms of the parasite and where antibodies against these proteins have been shown to block the progression of the parasite's life cycle in the mosquito and thus block transmission to the next human host. We have successfully produced a region of the Pfs230 antigen in our plant-based transient-expression system and evaluated this vaccine candidate in an animal model. This plant-produced protein, 230CMB, is expressed at approximately 800 mg/kg in fresh whole leaf tissue and is 100% soluble. Administration of 230CMB with >90% purity induces strong immune responses in rabbits with high titers of transmission-blocking antibodies, resulting in a greater than 99% reduction in oocyst counts in the presence of complement, as determined by a standard membrane feeding assay. Our data provide a clear perspective on the clinical development of a Pfs230-based transmission-blocking malaria vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Proteínas do Sistema Complemento/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Plantas Geneticamente Modificadas/genética , Proteínas de Protozoários/imunologia , Animais , Anopheles/parasitologia , Antígenos de Protozoários/biossíntese , Antígenos de Protozoários/genética , Humanos , Vacinas Antimaláricas/genética , Plantas , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
13.
Vaccine ; 27(25-26): 3471-4, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19200825

RESUMO

Yersinia pestis continues to pose a threat as a potential biological weapon and is recognized by public health experts as a re-emerging infectious disease. Therefore there is great interest in developing a safe and effective vaccine. Vaccines against plague containing both the Fraction 1 (F1) and V antigens of Y. pestis have shown promise in protecting animal models against pneumonic plague, the deadliest form of the disease. Here we report on a plague vaccine consisting of the F1 and LcrV antigens fused to a single carrier molecule, the thermostable enzyme lichenase from Clostridium thermocellum, and expressed in and purified from Nicotiana benthamiana plants. When administered to Cynomolgus Macaques this purified plant-produced vaccine induced high titers of serum IgG, mainly of the IgG1 isotype, against both F1 and LcrV. These immunized animals were subsequently challenged and the LcrV-F1 plant-produced vaccine conferred complete protection against aerosolized Y. pestis.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Nicotiana/genética , Vacina contra a Peste/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Feminino , Macaca fascicularis , Peste/prevenção & controle , Proteínas Citotóxicas Formadoras de Poros/genética
14.
Vaccine ; 27(7): 1087-92, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-19100806

RESUMO

The global spread of highly pathogenic avian influenza virus (H5N1 subtype) has promoted efforts to develop human vaccines against potential pandemic outbreaks. However, current platforms for influenza vaccine production are cumbersome, limited in scalability and often require the handling of live infectious virus. We describe the production of hemagglutinin from the A/Indonesia/05/05 strain of H5N1 influenza virus by transient expression in plants, and demonstrate the immunogenicity and protective efficacy of the vaccine candidate in animal models. Immunization of mice and ferrets with plant-derived hemagglutinin elicited serum hemagglutinin-inhibiting antibodies and protected the ferrets against challenge infection with a homologous virus. This demonstrates that plant-derived H5 HA is immunogenic in mice and ferrets, and can induce protective immunity against infection with highly pathogenic avian influenza virus. Plants could therefore be suitable as a platform for the rapid, large-scale production of influenza vaccines in the face of a pandemic.


Assuntos
Hemaglutininas Virais/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Plantas Geneticamente Modificadas , Animais , Anticorpos Antivirais/sangue , Peso Corporal , Furões , Testes de Inibição da Hemaglutinação , Hemaglutininas Virais/genética , Hemaglutininas Virais/isolamento & purificação , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Viremia/prevenção & controle
15.
Vaccine ; 27(25-26): 3467-70, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19200814

RESUMO

Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have been identified as a potential pandemic threat by the World Health Organization (WHO). Since 1997, these viruses have been spreading from Asia to Europe and Africa with increasing genetic and antigenic diversities. Vaccination is the preferred strategy for the prevention and control of influenza infections and the availability of a system for the rapid engineering and production of vaccines is required in the event of an influenza pandemic. In this study, we engineered and produced recombinant hemagglutinin (HA) from A/Bar-headed Goose/Qinghai/1A/05 (clade 2.2) and A/Anhui/1/2005 (clade 2.3) in Nicotiana benthamiana plants. Immunization of mice with these plant-derived HA antigens elicited serum hemagglutination inhibition (HI) and virus neutralization (VN) antibodies. These results suggest the utility of our plant-expression system for recombinant influenza vaccine production.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Nicotiana/genética , Vacinas Sintéticas/imunologia , Animais , Testes de Inibição da Hemaglutinação , Virus da Influenza A Subtipo H5N1/classificação , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização
16.
Influenza Other Respir Viruses ; 2(1): 33-40, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19453491

RESUMO

BACKGROUND: Influenza A viruses are of major concern for public health, causing worldwide epidemics associated with high morbidity and mortality. Vaccines are critical for protection against influenza, but given the recent emergence of new strains with pandemic potential, and some limitations of the current production systems, there is a need for new approaches for vaccine development. OBJECTIVE: To demonstrate the immunogenicity and protective efficacy of plant-produced influenza antigens. Method We engineered, using influenza A/Wyoming/3/03 (H3N2) as a model virus, the stem and globular domains of hemagglutinin (HA) produced in plants as fusions to a carrier protein and used purified antigens with and without adjuvant for ferret immunization. RESULTS: These plant-produced antigens were highly immunogenic and conferred complete protection against infection in the ferret challenge model. The addition of plant-produced neuraminidase was shown to enhance the immune response in ferrets. CONCLUSIONS: Plants can be used as a production vehicle for vaccine development against influenza. Domains of HA can generate protective immune responses in ferrets.


Assuntos
Hemaglutininas Virais/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Temperatura Corporal , Peso Corporal , Ensaio de Imunoadsorção Enzimática , Feminino , Furões , Testes de Inibição da Hemaglutinação , Hemaglutininas Virais/genética , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/genética , Plantas Geneticamente Modificadas , Índice de Gravidade de Doença , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Eliminação de Partículas Virais
17.
Influenza Other Respir Viruses ; 1(1): 19-25, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19453476

RESUMO

Historically, most vaccines have been based on killed or live-attenuated infectious agents. Although very successful at immunizing populations against disease, both approaches raise safety concerns and often have limited production capacity. This has resulted in increased emphasis on the development of subunit vaccines. Several recombinant systems have been considered for subunit vaccine manufacture, including plants, which offer advantages both in cost and in scale of production. We have developed a plant expression system utilizing a 'launch vector', which combines the advantageous features of standard agrobacterial binary plasmids and plant viral vectors, to achieve high-level target antigen expression in plants. As an additional feature, to aid in target expression, stability and purification, we have engineered a thermostable carrier molecule to which antigens are fused. We have applied this launch vector/carrier system to engineer and express target antigens from various pathogens, including, influenza A/Vietnam/04 (H5N1) virus.


Assuntos
Antígenos/biossíntese , Antígenos/genética , Vetores Genéticos , Plantas Geneticamente Modificadas/genética , Vacinas de Subunidades Antigênicas/biossíntese , Vacinas de Subunidades Antigênicas/genética , Antígenos Virais/biossíntese , Antígenos Virais/genética , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
18.
Virology ; 310(1): 50-63, 2003 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-12788630

RESUMO

Expression of foreign peptides on the surface of cowpea mosaic virus particles leads to the creation of chimaeras with a variety of phenotypes and yields. Two factors were shown to be particularly significant in determining the properties of a given chimaera: the length of the inserted sequence and its isoelectric point. The deleterious effect of high isoelectric point on the ability of chimeras to produce a systemic infection occurs irrespective of the site of insertion of the peptide. Ultrastructural analysis of tissue infected with chimaeras with different phenotypes showed that all produced particles with a tendency to aggregate, irrespective of the size or isoelectric point of the insert. Host range and transmission studies revealed that the expression of a foreign peptide did not (1) alter the virus host range, (2) increase the rate of transmission by beetles or through seed, or (3) change the insect vector specificity. These findings have implications for both the utility and the biosafety of Cowpea mosaic virus-based chimaeras.


Assuntos
Quimera , Comovirus/genética , Plantas/virologia , Sequência de Aminoácidos , Animais , Besouros/virologia , Ponto Isoelétrico , Dados de Sequência Molecular , Fenótipo , Sementes/virologia , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA