Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 81(19): 6710-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187957

RESUMO

Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity.


Assuntos
Proteínas de Bactérias/genética , Bradyrhizobium/genética , Glycine max/genética , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Alelos , Proteínas de Bactérias/metabolismo , Bradyrhizobium/fisiologia , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Glycine max/microbiologia , Glycine max/fisiologia , Simbiose
2.
Am J Physiol Cell Physiol ; 296(2): C306-16, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19073898

RESUMO

Stimulation of numerous G protein-coupled receptors leads to the elevation of intracellular concentrations of cAMP, which subsequently activates the PKA pathway. Specificity of the PKA signaling module is determined by a sophisticated subcellular targeting network that directs the spatiotemporal activation of the kinase. This specific compartmentalization mechanism occurs through high-affinity interactions of PKA with A-kinase anchoring proteins (AKAPs), the role of which is to target the kinase to discrete subcellular microdomains. Recently, a peptide designated "AKAPis" has been proposed to competitively inhibit PKA-AKAP interactions in vitro. We therefore sought to characterize a cell-permeable construct of the AKAPis inhibitor and use it as a tool to characterize the impact of PKA compartmentalization by AKAPs. Using insulin-secreting pancreatic beta-cells (INS-1 cells), we showed that TAT-AKAPis (at a micromolar range) dose dependently disrupted a significant fraction of endogenous PKA-AKAP interactions. Immunoflurescent analysis also indicated that TAT-AKAPis significantly affected PKA subcellular localization. Furthermore, TAT-AKAPis markedly attenuated glucagon-induced phosphorylations of p44/p42 MAPKs and cAMP response element binding protein, which are downstream effectors of PKA. In parallel, TAT-AKAPis dose dependently inhibited the glucagon-induced potentiation of insulin release. Therefore, AKAP-mediated subcellular compartmentalization of PKA represents a key mechanism for PKA-dependent phosphorylation events and potentiation of insulin secretion in intact pancreatic beta-cells. More interestingly, our data highlight the effectiveness of the cell-permeable peptide-mediated approach to monitoring in cellulo PKA-AKAP interactions and delineating PKA-dependent phosphorylation events underlying specific cellular responses.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Permeabilidade da Membrana Celular , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Células Secretoras de Insulina/enzimologia , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Imunofluorescência , Glucagon/metabolismo , Glucose/metabolismo , Imunoprecipitação , Insulina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Ratos , Fatores de Tempo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA