Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(22): 12192-12200, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32393624

RESUMO

Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.


Assuntos
Mudança Climática , Temperatura Baixa , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Árvores/crescimento & desenvolvimento , Ásia , Europa (Continente) , Florestas , América do Norte , Fenótipo , Análise Espaço-Temporal , Temperatura
2.
Oecologia ; 195(3): 705-717, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33559003

RESUMO

Tropical rainforest disturbance and conversion are critical drivers of biodiversity loss. A key knowledge gap is understanding the impacts of habitat modification on mechanisms of community assembly, which are predicted to respond differently between taxa and across spatial scales. We use a null model approach to detect trait assembly of species at local- and landscape-scales, and then subdivide communities with different habitat associations and foraging guilds to investigate whether the detection of assembly mechanisms varies between groups. We focus on two indicator taxa, dung beetles and birds, across a disturbance gradient of primary rainforest, selectively logged rainforest, and oil palm plantations in Borneo, Southeast Asia. Random community assembly was predominant for dung beetles across habitats, whereas trait convergence, indicative of environmental filtering, occurred across the disturbance gradient for birds. Assembly patterns at the two spatial scales were similar. Subdividing for habitat association and foraging guild revealed patterns hidden when focusing on the overall community. Dung beetle forest specialists and habitat generalists showed opposing assembly mechanisms in primary forest, community assembly of habitat generalists for both taxa differed with disturbance intensity, and insectivorous birds strongly influenced overall community assembly relative to other guilds. Our study reveals the sensitivity of community assembly mechanisms to anthropogenic disturbance via a shift in the relative contribution of stochastic and deterministic processes. This highlights the need for greater understanding of how habitat modification alters species interactions and the importance of incorporating species' traits within assessments.


Assuntos
Besouros , Animais , Biodiversidade , Aves , Bornéu , Ecossistema , Florestas
3.
J Anim Ecol ; 89(11): 2440-2450, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969021

RESUMO

Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine-scale changes in air temperature, and whether species-specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine-scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK-wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine-scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature-sensitive species.


Assuntos
Borboletas , Animais , Regulação da Temperatura Corporal , Mudança Climática , Temperatura Baixa , Ecossistema , Temperatura
4.
Proc Natl Acad Sci U S A ; 119(42): e2214825119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197959
5.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851235

RESUMO

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Assuntos
Formigas/fisiologia , Biodiversidade , Animais , Clima , Ecossistema
6.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298349

RESUMO

Both the abiotic environment and the composition of animal and plant communities change with elevation. For mutualistic species, these changes are expected to result in altered partner availability, and shifts in context-dependent benefits for partners. To test these predictions, we assessed the network structure of terrestrial ant-plant mutualists and how the benefits to plants of ant inhabitation changed with elevation in tropical forest in Papua New Guinea. At higher elevations, ant-plants were rarer, species richness of both ants and plants decreased, and the average ant or plant species interacted with fewer partners. However, networks became increasingly connected and less specialized, more than could be accounted for by reductions in ant-plant abundance. On the most common ant-plant, ants recruited less and spent less time attacking a surrogate herbivore at higher elevations, and herbivory damage increased. These changes were driven by turnover of ant species rather than by within-species shifts in protective behaviour. We speculate that reduced partner availability at higher elevations results in less specialized networks, while lower temperatures mean that even for ant-inhabited plants, benefits are reduced. Under increased abiotic stress, mutualistic networks can break down, owing to a combination of lower population sizes, and a reduction in context-dependent mutualistic benefits.


Assuntos
Formigas , Plantas , Simbiose , Altitude , Animais , Florestas , Herbivoria , Papua Nova Guiné , Clima Tropical
7.
Ecology ; 98(3): 883-884, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27984661

RESUMO

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Assuntos
Formigas/fisiologia , Bases de Dados Factuais , Ecologia , Animais , Formigas/classificação , Ecossistema
8.
Ecol Lett ; 19(9): 1009-22, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27358193

RESUMO

We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness.


Assuntos
Biodiversidade , Ecossistema , Modelos Biológicos , Animais , Teorema de Bayes , Insetos/fisiologia , Fenômenos Fisiológicos Vegetais , Vertebrados/fisiologia
9.
Ecol Lett ; 18(3): 254-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25622647

RESUMO

Understanding how species assemble into communities is a key goal in ecology. However, assembly rules are rarely tested experimentally, and their ability to shape real communities is poorly known. We surveyed a diverse community of epiphyte-dwelling ants and found that similar-sized species co-occurred less often than expected. Laboratory experiments demonstrated that invasion was discouraged by the presence of similarly sized resident species. The size difference for which invasion was less likely was the same as that for which wild species exhibited reduced co-occurrence. Finally we explored whether our experimentally derived assembly rules could simulate realistic communities. Communities simulated using size-based species assembly exhibited diversities closer to wild communities than those simulated using size-independent assembly, with results being sensitive to the combination of rules employed. Hence, species segregation in the wild can be driven by competitive species assembly, and this process is sufficient to generate observed species abundance distributions for tropical epiphyte-dwelling ants.


Assuntos
Formigas , Biota , Espécies Introduzidas , Modelos Biológicos , Animais , Bornéu , Comportamento Competitivo , Simbiose
10.
Proc Biol Sci ; 282(1808): 20150418, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25994675

RESUMO

Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.


Assuntos
Formigas/fisiologia , Biodiversidade , Clima , Animais , Mudança Climática , Temperatura
11.
Oecologia ; 178(2): 441-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25575674

RESUMO

Anthropogenic disturbance and the spread of non-native species disrupt natural communities, but also create novel interactions between species. By-product mutualisms, in which benefits accrue as side effects of partner behaviour or morphology, are often non-specific and hence may persist in novel ecosystems. We tested this hypothesis for a two-way by-product mutualism between epiphytic ferns and their ant inhabitants in the Bornean rain forest, in which ants gain housing in root-masses while ferns gain protection from herbivores. Specifically, we assessed how the specificity (overlap between fern and ground-dwelling ants) and the benefits of this interaction are altered by selective logging and conversion to an oil palm plantation habitat. We found that despite the high turnover of ant species, ant protection against herbivores persisted in modified habitats. However, in ferns growing in the oil palm plantation, ant occupancy, abundance and species richness declined, potentially due to the harsher microclimate. The specificity of the fern-ant interactions was also lower in the oil palm plantation habitat than in the forest habitats. We found no correlations between colony size and fern size in modified habitats, and hence no evidence for partner fidelity feedbacks, in which ants are incentivised to protect fern hosts. Per species, non-native ant species in the oil palm plantation habitat (18 % of occurrences) were as important as native ones in terms of fern protection and contributed to an increase in ant abundance and species richness with fern size. We conclude that this by-product mutualism persists in logged forest and oil palm plantation habitats, with no detectable shift in partner benefits. Such persistence of generalist interactions in novel ecosystems may be important for driving ecosystem functioning.


Assuntos
Agricultura , Formigas , Conservação dos Recursos Naturais , Gleiquênias , Herbivoria , Floresta Úmida , Simbiose , Animais , Formigas/classificação , Arecaceae , Bornéu , Resistência à Doença , Ecossistema , Microclima , Doenças das Plantas , Raízes de Plantas , Especificidade da Espécie
12.
Ecol Evol ; 13(2): e9760, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778840

RESUMO

Obligate mutualistic plant-ants are often constrained by their plant partner's capacity to provide resources. However, despite this limitation, some ant partners actively reject potential prey items and instead drop them from the plant rather than consuming them, leaving the ants entirely reliant on host plant-provided food, including that provided indirectly by the symbiotic scale insects that ants tend inside the plants. This dependency potentially increases the efficiency of these ants in defending their host. We hypothesize that if this ant behavior was beneficial to the symbiosis, prey rejection by ants would be observed across multiple plant host species. We also hypothesize that plant-provided food items and symbiotic scale insects from other ant plants should be rejected. We address these hypotheses in the Crematogaster ant-Macaranga plant system, in which plants provide living space and food, while ants protect plants from herbivory. We observed food acceptance and rejection behavior across five ant species and three plant host species. Ants were offered three types of food: termites as a surrogate herbivore, symbiotic scale insects, and nutritious food bodies (FB) produced by different host plant species. The unique ant species living in M. winkleri was the most likely to reject food items not provided by the plant species, followed by ants in M. glandibracteolata, while ants in M. pearsonii accepted most items offered to them. Using stable isotopes, chemical cues, and proteomic analyses, we demonstrate that this behavior was not related to differences between plant species in nutritional quality or composition of FB. Isotopic signatures revealed that certain species are primary consumers but other ant species can be secondary consumers even where surrogate herbivores are rejected, although these values varied depending on the ant developmental stage and plant species. Macaranga pearsonii and M. glandibracteolata, the two most closely related plant species, had most similar surface chemical cues of FB. However, M. glandibracteolata had strongest differences in food body nutritional content, isotopic signatures, and protein composition from either of the other two plant species studied. Taken together we believe our results point toward potential host coercion of symbiont ants by plants in the genus Macaranga Thouars (Euphorbiaceae).

13.
J Anim Ecol ; 81(5): 1103-12, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22642689

RESUMO

1. Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2. We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height ≥ 5 cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3. In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4. Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5. Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Biodiversidade , Árvores/classificação , Clima Tropical , Animais , Conservação dos Recursos Naturais , Árvores/fisiologia
14.
Biol Lett ; 8(3): 397-400, 2012 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-22188674

RESUMO

The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw-the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha(-1)): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.


Assuntos
Artrópodes/fisiologia , Biodiversidade , Ecossistema , Marasmius/fisiologia , Árvores , Animais , Malásia , Clima Tropical
15.
Ecol Evol ; 12(8): e9158, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919394

RESUMO

Abiotic and biotic factors structure species assembly in ecosystems both horizontally and vertically. However, the way community composition changes along comparable horizontal and vertical distances in complex three-dimensional habitats, and the factors driving these patterns, remains poorly understood. By sampling ant assemblages at comparable vertical and horizontal spatial scales in a tropical rainforest, we tested hypotheses that predicted differences in vertical and horizontal turnover explained by different drivers in vertical and horizontal space. These drivers included environmental filtering, such as microclimate (temperature, humidity, and photosynthetic photon flux density) and microhabitat connectivity (leaf area), which are structured differently across vertical and horizontal space. We found that both ant abundance and richness decreased significantly with increasing vertical height. Although the dissimilarity between ant assemblages increased with vertical distance, indicating a clear distance-decay pattern, the dissimilarity was higher horizontally where it appeared independent of distance. The pronounced horizontal and vertical structuring of ant assemblages across short distances is likely explained by a combination of microclimate and microhabitat connectivity. Our results demonstrate the importance of considering three-dimensional spatial variation in local assemblages and reveal how highly diverse communities can be supported by complex habitats.

16.
Trends Ecol Evol ; 36(5): 387-390, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33653581

RESUMO

Host-specific natural enemies limit the abundance of common species. This can increase host community diversity, since no single species dominates, and is known as the 'Janzen-Connell effect.' Evidence is now accumulating that host-specific mutualists can increase abundances of particular host species, hence reducing community diversity, comprising a 'reverse Janzen-Connell effect.'

17.
Biol Rev Camb Philos Soc ; 95(3): 555-572, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31876057

RESUMO

Animal interactions play an important role in understanding ecological processes. The nature and intensity of these interactions can shape the impacts of organisms on their environment. Because ants and termites, with their high biomass and range of ecological functions, have considerable effects on their environment, the interaction between them is important for ecosystem processes. Although the manner in which ants and termites interact is becoming increasingly well studied, there has been no synthesis to date of the available literature. Here we review and synthesise all existing literature on ant-termite interactions. We infer that ant predation on termites is the most important, most widespread, and most studied type of interaction. Predatory ant species can regulate termite populations and subsequently slow down the decomposition of wood, litter and soil organic matter. As a consequence they also affect plant growth and distribution, nutrient cycling and nutrient availability. Although some ant species are specialised termite predators, there is probably a high level of opportunistic predation by generalist ant species, and hence their impact on ecosystem processes that termites are known to provide varies at the species level. The most fruitful future research direction will be to evaluate the impact of ant-termite predation on broader ecosystem processes. To do this it will be necessary to quantify the efficacy both of particular ant species and of ant communities as a whole in regulating termite populations in different biomes. We envisage that this work will require a combination of methods, including DNA barcoding of ant gut contents along with field observations and exclusion experiments. Such a combined approach is necessary for assessing how this interaction influences entire ecosystems.


Assuntos
Formigas/fisiologia , Isópteros/fisiologia , Animais , Formigas/genética , DNA/análise , Ecologia , Isópteros/genética , Comportamento Predatório
18.
Trends Ecol Evol ; 35(5): 454-466, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32294426

RESUMO

The structure of ecological networks reflects the evolutionary history of their biotic components, and their dynamics are strongly driven by ecoevolutionary processes. Here, we present an appraisal of recent relevant research, in which the pervasive role of evolution within ecological networks is manifest. Although evolutionary processes are most evident at macroevolutionary scales, they are also important drivers of local network structure and dynamics. We propose components of a blueprint for further research, emphasising process-based models, experimental evolution, and phenotypic variation, across a range of distinct spatial and temporal scales. Evolutionary dimensions are required to advance our understanding of foundational properties of community assembly and to enhance our capability of predicting how networks will respond to impending changes.


Assuntos
Evolução Biológica , Ecossistema
19.
PeerJ ; 6: e4231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423344

RESUMO

BACKGROUND: Competitive interactions in biological communities can be thought of as giving rise to "assembly rules" that dictate the species that are able to co-exist. Ant communities in tropical canopies often display a particular pattern, an "ant mosaic", in which competition between dominant ant species results in a patchwork of mutually exclusive territories. Although ant mosaics have been well-documented in plantation landscapes, their presence in pristine tropical forests remained contentious until recently. Here we assess presence of ant mosaics in a hitherto under-investigated forest stratum, the emergent trees of the high canopy in primary tropical rain forest, and explore how the strength of any ant mosaics is affected by spatial scale, time of day, and sampling method. METHODS: To test whether these factors might impact the detection of ant mosaics in pristine habitats, we sampled ant communities from emergent trees, which rise above the highest canopy layers in lowland dipterocarp rain forests in North Borneo (38.8-60.2 m), using both baiting and insecticide fogging. Critically, we restricted sampling to only the canopy of each focal tree. For baiting, we carried out sampling during both the day and the night. We used null models of species co-occurrence to assess patterns of segregation at within-tree and between-tree scales. RESULTS: The numerically dominant ant species on the emergent trees sampled formed a diverse community, with differences in the identity of dominant species between times of day and sampling methods. Between trees, we found patterns of ant species segregation consistent with the existence of ant mosaics using both methods. Within trees, fogged ants were segregated, while baited ants were segregated only at night. DISCUSSION: We conclude that ant mosaics are present within the emergent trees of the high canopy of tropical rain forest in Malaysian Borneo, and that sampling technique, spatial scale, and time of day interact to determine observed patterns of segregation. Restricting sampling to only emergent trees reveals segregatory patterns not observed in ground-based studies, confirming previous observations of stronger segregation with increasing height in the canopy.

20.
Trends Ecol Evol ; 32(6): 438-451, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28359572

RESUMO

Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO2, water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world.


Assuntos
Biodiversidade , Florestas , Atmosfera , Ecossistema , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA