Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38159931

RESUMO

AIMS: To examine the diversity of Staphylococcus aureus isolated from nasal swabs of ruminants in Rwanda. METHODS AND RESULTS: A total of 454 nasal swabs from 203 cows, 170 goats, and 81 sheep were examined for the presence of S. aureus, and 30 S. aureus isolates were detected and characterized pheno- and genotypically. Resistance to penicillin and/or tetracycline was observed. The isolates were assigned to eight different spa types (t21057 (novel), t10103, t18853, t20842, t318, t355, t458, and t9432) belonging to six clonal complexes (CCs) (CC152, CC30, CC3591, CC3666, CC522, and CC97). Panton-Valentine leukocidin (PVL) genes (lukF-PV/lukS-PV), the bovine leukocidin genes (lukM/lukF-P83), and the human and bovine variants of the toxic shock syndrome toxin gene tst-1 variants were detected. CONCLUSION: These findings demonstrate that the nares of ruminants in Rwanda are colonized with mastitis-associated S. aureus, including lineages that are also carried by humans, underscoring the zoonotic risk, especially for livestock keepers. These results highlight the crucial importance of hygiene measures when handling livestock.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Feminino , Bovinos , Animais , Ovinos , Humanos , Staphylococcus aureus/genética , Ruminantes , Infecções Estafilocócicas/veterinária , Antibacterianos/farmacologia , Tetraciclina , Cabras , Staphylococcus aureus Resistente à Meticilina/genética
2.
Clin Microbiol Rev ; 34(3): e0018820, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34076490

RESUMO

Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.


Assuntos
Oxazolidinonas , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Oxazolidinonas/farmacologia
3.
Artigo em Alemão | MEDLINE | ID: mdl-37184673

RESUMO

One Health refers to a concept that links human, animal, and environmental health. In Germany, there is extensive data on antibiotic resistance (AMR) and multidrug-resistant (micro)organisms (MDRO) in human and veterinary medicine, as well as from studies in various environmental compartments (soil, water, wastewater). All these activities are conducted according to different specifications and standards, which makes it difficult to compare data. A focus on AMR and MDRO of human therapeutic importance is helpful to provide some guidance. Most data are available across sectors on methicillin-resistant Staphylococcus aureus (MRSA) and multiresistant Enterobacterales such as Escherichia coli and Klebsiella pneumoniae. Here, the trends of resistance are heterogeneous. Antibiotic use leads to MRE selection, which is well documented. Success in minimizing antibiotic use has also been demonstrated in recent years in several sectors and could be correlated with success in containing AMR and MDRO (e.g., decrease in MRSA in human medicine). Sector-specific measures to reduce the burden of MDRO and AMR are also necessary, as not all resistance problems are linked to other sectors. Carbapenem resistance is still rare, but most apparent in human pathogens. Colistin resistance occurs in different sectors but shows different mechanisms in each. Resistance to antibiotics of last resort such as linezolid is rare in Germany, but shows a specific One Health correlation. Efforts to harmonize methods, for example in the field of antimicrobial susceptibility testing and genome-based pathogen and AMR surveillance, are an important first step towards a better comparability of the different data collections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Saúde Única , Animais , Humanos , Alemanha , Antibacterianos/uso terapêutico , Klebsiella pneumoniae , Escherichia coli , Farmacorresistência Bacteriana Múltipla
4.
Lett Appl Microbiol ; 74(6): 1008-1015, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35263446

RESUMO

This is the first report of acute deaths in five European brown hares (Lepus europaeus) attributed to mucoid and necrotizing typhlocolitis caused by genetically different Cronobacter (C.) turicensis strains in northeastern Austria. As this opportunistic pathogen is mainly known for causing disease in immunocompromised humans and neonates, this previously unrecognized potential for a spill over from a wildlife reservoir to humans warrants further attention.


Assuntos
Cronobacter , Lebres , Animais , Animais Selvagens , Surtos de Doenças/veterinária , Humanos , Recém-Nascido
5.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232529

RESUMO

Staphylococcus aureus is a widespread and common opportunistic bacterium that can colonise or infect humans as well as a wide range of animals. There are a few studies of both methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolated from monkeys, apes, and lemurs, indicating a presence of a number of poorly or unknown lineages of the pathogen. In order to obtain insight into staphylococcal diversity, we sequenced strains from wild and captive individuals of three macaque species (Macaca mulatta, M. assamensis, and M. sylvanus) using Nanopore and Illumina technologies. These strains were previously identified by microarray as poorly or unknown strains. Isolates of novel lineages ST4168, ST7687, ST7688, ST7689, ST7690, ST7691, ST7692, ST7693, ST7694, ST7695, ST7745, ST7746, ST7747, ST7748, ST7749, ST7750, ST7751, ST7752, ST7753, and ST7754 were sequenced and characterised for the first time. In addition, isolates belonging to ST2990, a lineage also observed in humans, and ST3268, a MRSA strain already known from macaques, were also included into the study. Mobile genetic elements, genomic islands, and carriage of prophages were analysed. There was no evidence for novel host-specific virulence factors. However, a conspicuously high rate of carriage of a pathogenicity island harbouring edinB and etD2/etE as well as a higher number of repeat units within the gene sasG (encoding an adhesion factor) than in human isolates were observed. None of the strains harboured the genes encoding Panton-Valentine leukocidin. In conclusion, wildlife including macaques may harbour an unappreciated diversity of S. aureus lineages that may be of clinical relevance for humans, livestock, or for wildlife conservation, given the declining state of many wildlife populations.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos , Humanos , Macaca/genética , Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Análise de Sequência , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Fatores de Virulência/genética
6.
J Antimicrob Chemother ; 76(7): 1703-1711, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33822977

RESUMO

OBJECTIVES: To reconstruct the evolutionary history and genomic epidemiology of Staphylococcus aureus ST9 in China. METHODS: Using WGS analysis, we described the phylogeny of 131 S. aureus ST9 isolates collected between 2002 and 2016 from 11 provinces in China, including six clinical samples from Taiwan. We also investigated the complex structure and distribution of the lsa(E)-carrying multiresistance gene cluster, and genotyped prophages in the genomes of the ST9 isolates. RESULTS: ST9 was subdivided into one major (n = 122) and one minor (n = 9) clade. Bayesian phylogeny predicted the divergence of ST9 isolates in pig farming in China as early as 1987, which then evolved rapidly in the following three decades. ST9 isolates shared similar multiresistance properties, which were likely acquired before the ST9 emergence in China. The accessory genome is highly conserved, and ST9 harboured similar sets of phages, but lacked certain virulence genes. CONCLUSIONS: Host exchange and regional transmission of ST9 have occurred between pigs and humans. Pig rearing and trading might have favoured gene exchanges between ST9 isolates. Resistance genes, obtained from the environment and other isolates, were stably integrated into the chromosomal DNA. The abundance of resistance genes among ST9 is likely attributed to the extensive use of antimicrobial agents in livestock. Phages are present in the genomes of ST9 and may play a role in the rapid evolution of this ST. Although human ST9 infections are rare, ST9 isolates may constitute a potential risk to public health as a repository of antimicrobial resistance genes.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos , Teorema de Bayes , China/epidemiologia , Genômica , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus , Suínos , Taiwan/epidemiologia
7.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072783

RESUMO

Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum ß-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant ß-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-ß-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.


Assuntos
Organismos Aquáticos/microbiologia , Enterobacter/enzimologia , Mamíferos/microbiologia , Salmonella/enzimologia , beta-Lactamases/biossíntese , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Farmacorresistência Bacteriana , Enterobacter/efeitos dos fármacos , Enterobacter/genética , Enterobacter/isolamento & purificação , Genótipo , Testes de Sensibilidade Microbiana , Salmonella/efeitos dos fármacos , Salmonella/genética , Salmonella/isolamento & purificação , Fatores de Virulência/genética , beta-Lactamases/genética
8.
J Antimicrob Chemother ; 74(8): 2166-2170, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31081013

RESUMO

OBJECTIVES: To investigate the occurrence, the genetic environment and the functionality of novel variants of the MDR gene cfr(C) in Campylobacter from China. METHODS: A total of 370 Campylobacter isolates of porcine and chicken origin collected from three regions of China in 2015 were screened for cfr(C) by PCR. The phenotypes and genotypes of cfr(C)-positive isolates were investigated by antimicrobial susceptibility testing, PFGE, MLST, S1-PFGE, Southern blotting and WGS. Quantitative RT-PCR was used to compare the expression levels of the cfr(C) variants in their original isolate and clone constructs in Campylobacter jejuni NCTC 11168. RESULTS: Four (1.1%) porcine Campylobacter coli isolates were positive for cfr(C). They failed to show elevated MICs of phenicols. The deduced Cfr(C) sequences identified exhibited 2-6 amino acid changes compared with the original Cfr(C) reported in the USA. Cloning of the cfr(C) variant genes into C. jejuni NCTC 11168 resulted in ≥32-fold increases in the MICs of phenicols, indicating that the cfr(C) variant genes are functional. The cfr(C)-carrying isolates belonged to three genotypes and WGS analysis revealed the cfr(C) genes were chromosomally located in MDR genomic islands, which contained multiple antibiotic resistance genes of Gram-positive origin. CONCLUSIONS: This study identified chromosomal cfr(C) genes in C. coli isolates from China. They appeared functionally dormant in the original isolates but were fully functional when cloned and expressed in C. jejuni. The cfr(C) genes were co-transferred with other antibiotic resistance genes, possibly from Gram-positive bacteria. These findings reveal new insights into the function and transmission of cfr(C) in Campylobacter.


Assuntos
Antibacterianos/farmacologia , Campylobacter/efeitos dos fármacos , Campylobacter/genética , Farmacorresistência Bacteriana Múltipla/genética , Genes MDR , Variação Genética , Animais , Técnicas de Tipagem Bacteriana , Campylobacter jejuni/genética , Galinhas/microbiologia , China , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Genótipo , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Suínos/microbiologia , Sequenciamento Completo do Genoma
9.
Euro Surveill ; 24(32)2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31411133

RESUMO

BackgroundBrown rats (Rattus norvegicus) are an important wildlife species in cities, where they live in close proximity to humans. However, few studies have investigated their role as reservoir of antimicrobial-resistant bacteria.AimWe intended to determine whether urban rats at two highly frequented sites in Vienna, Austria, carry extended-spectrum ß-lactamase-producing Enterobacteriaceae, fluoroquinolone-resistant Enterobacteriaceae and meticillin-resistant (MR) Staphylococcus spp. (MRS).MethodsWe surveyed the presence of antimicrobial resistance in 62 urban brown rats captured in 2016 and 2017 in Vienna, Austria. Intestinal and nasopharyngeal samples were cultured on selective media. We characterised the isolates and their antimicrobial properties using microbiological and genetic methods including disk diffusion, microarray analysis, sequencing, and detection and characterisation of plasmids.ResultsEight multidrug-resistant Escherichia coli and two extensively drug-resistant New Delhi metallo-ß-lactamases-1 (NDM-1)-producing Enterobacter xiangfangensis ST114 (En. cloacae complex) were isolated from nine of 62 rats. Nine Enterobacteriaceae isolates harboured the bla CTX-M gene and one carried a plasmid-encoded ampC gene (bla CMY-2). Forty-four MRS were isolated from 37 rats; they belonged to seven different staphylococcal species: S. fleurettii, S. sciuri, S. aureus, S. pseudintermedius, S. epidermidis, S. haemolyticus (all mecA-positive) and mecC-positive S. xylosus.ConclusionOur findings suggest that brown rats in cities are a potential source of multidrug-resistant bacteria, including carbapenem-resistant En. xiangfangensis ST114. Considering the increasing worldwide urbanisation, rodent control remains an important priority for health in modern cities.


Assuntos
Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Intestinos/virologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Nasofaringe/virologia , Ratos/virologia , Animais , Áustria , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Análise em Microsséries , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , População Urbana
10.
J Antimicrob Chemother ; 73(5): 1217-1221, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29394397

RESUMO

Objectives: To investigate Aeromonas spp. isolates for the presence of the novel resistance gene mcr-3 or variants thereof and to characterize the positive isolates by whole genome sequence analysis. Methods: A total of 479 unrelated Aeromonas isolates were investigated by PCR for the genes mcr-1, mcr-2 and mcr-3. Positive isolates were investigated for their colistin MICs. Species assignment was based on sequence analysis of 16s rRNA and gyrB and rpoB genes. The mcr-carrying contigs obtained by WGS were analysed for the genetic environments of the mcr genes. Results: Four (0.84%) Aeromonas isolates were positive in the mcr-3-specific PCR assay, whereas none of the isolates harboured mcr-1 or mcr-2. Each of the four mcr-3 genes encoded a novel variant, which showed amino acid identities of 95.0%-98.0% to the original Mcr-3 protein. These variants were designated Mcr-3.6 [Aeromonas allosaccharophila from golden orfe (Leuciscus idus)], Mcr-3.7 [Aeromonas media from turkey (Meleagris gallopavo)], Mcr-3.8 [Aeromonas jandaei from koi carp (Cyprinus carpio)] and Mcr-3.9 [Aeromonas hydrophila from koi carp]. The isolate harbouring the mcr-3.9 gene carried an additional mcr-3.8 gene and showed a distinctly higher colistin MIC of ≥128 mg/L than all other isolates. The genetic environments of the mcr-3 variant genes in all four isolates differed, but in part resembled the flanking regions of mcr-3.3 from Aeromonas veronii of chicken meat. Conclusions: This study identified four novel Mcr-3 variants. The isolates carrying the respective genes dated back to 2005 suggesting that this gene has existed for more than 12 years.


Assuntos
Aeromonas/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana , Aeromonas/classificação , Aeromonas/efeitos dos fármacos , Aeromonas/isolamento & purificação , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Doenças dos Peixes/microbiologia , Peixes , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Testes de Sensibilidade Microbiana , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência , Perus , Sequenciamento Completo do Genoma
11.
Plasmid ; 99: 22-31, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932965

RESUMO

Lincosamide resistance in staphylococci is based on the expression of a number of genes which specify three major resistance mechanisms: (i) enzymatic inactivation by lincosamide nucleotidyltransferases, (ii) ribosome protection by ABC-F proteins, and (iii) methylation of the ribosomal target sites in the 23S rRNA by Cfr or Erm methylases. So far, only two lnu genes, lnu(A) and lnu(B), which code for different types of lincosamide nucleotidyltransferases, have been found in staphylococci. The ABC-F proteins are encoded by genes of the vga, lsa and sal classes. The corresponding proteins exhibit ATP-binding domains, but lack transmembrane regions. So far, vga(A) genes - including the variant genes vga(A)V and vga(A)LC -, vga(C) genes and vga(E) genes - including the variant gene vga(E)V -, the lsa genes lsa(B) and lsa(E), as well as the sal(A) gene have been identified in staphylococci. The aforementioned genes, except lsa(B), confer resistance not only to lincosamides, but also to pleuromutilins and streptogramin A. The cfr and erm genes code for methylases which target the adenine residues at positions 2503 and 2048 in the 23S rRNA, respectively. While the cfr gene confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A, the erm genes mediate resistance to macrolides, lincosamides and streptogramin B. Many of the aforementioned lincosamide resistance genes are located on either plasmids or transposons and as such, can easily be disseminated across strain, species, and genus boundaries. The co-location of other antimicrobial resistance genes on the same mobile genetic element facilitates co-selection and persistence of the lincosamide resistance genes under the selective pressure imposed by other antimicrobial agents.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Lincosamidas/uso terapêutico , Plasmídeos/genética , Staphylococcus/genética , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Genes Bacterianos , Humanos , Macrolídeos/efeitos adversos , Macrolídeos/uso terapêutico , RNA Ribossômico 23S/genética , Staphylococcus/efeitos dos fármacos , Staphylococcus/patogenicidade , Estreptogramina B/efeitos adversos , Estreptogramina B/uso terapêutico
12.
Plasmid ; 99: 2-10, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29807043

RESUMO

Macrolide resistance in staphylococci is based on the expression of a number of genes which specify four major resistance mechanisms: (i) target site modification by methylation of the ribosomal target site in the 23S rRNA, (ii) ribosome protection via ABC-F proteins, (iii) active efflux via Major Facilitator Superfamily (MFS) transporters, and (iv) enzymatic inactivation by phosphotransferases or esterases. So far, 14 different classes of erm genes, which code for 23S rRNA methylases, have been reported to occur in staphylococci from humans, animals and environmental sources. Inducible or constitutive expression of the erm genes depends on the presence and intactness of a regulatory region known as translational attenuator. The erm genes commonly confer resistance not only to macrolides, but also to lincosamides and streptogramin B compounds. In contrast, the msr(A) gene codes for an ABC-F protein which confers macrolide and streptogramin B resistance whereas the mef(A) gene codes for a Major Facilitator Superfamily protein that can export only macrolides. Enzymatic inactivation of macrolides may be due to the macrolide phosphotransferase gene mph(C) or the macrolide esterase genes ere(A) or ere(B). Many of these macrolide resistance genes are part of either plasmids, transposons, genomic islands or prophages and as such, can easily be transferred across strain, species and genus boundaries. The co-location of other antimicrobial or metal resistance genes on the same mobile genetic element facilitates co-selection and persistence of macrolide resistance genes under the selective pressure of metals or other antimicrobial agents.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Staphylococcus/genética , Humanos , Macrolídeos/efeitos adversos , Macrolídeos/uso terapêutico , Testes de Sensibilidade Microbiana , Plasmídeos/efeitos dos fármacos , RNA Ribossômico 23S/efeitos dos fármacos , RNA Ribossômico 23S/genética , Staphylococcus/efeitos dos fármacos , Staphylococcus/patogenicidade , Estreptogramina B/efeitos adversos , Estreptogramina B/uso terapêutico
15.
J Antimicrob Chemother ; 72(10): 2769-2774, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091194

RESUMO

Objectives: To develop a standard reference broth microdilution method for antimicrobial susceptibility testing (AST) of Arcobacter butzleri. The protocol was subsequently applied to a collection of A. butzleri isolates from different sources. Methods: Broth microdilution susceptibility testing was performed on eight A. butzleri isolates in three media: non-supplemented CAMHB, CAMHB + 2% FBS and CAMHB + 5% FBS. The MIC values were read after 24 and 48 h of incubation at 35 ±âŸ2 °C in ambient air. A logistic regression model was used to determine the combination of medium and incubation time yielding the most homogeneous results. Subsequently, the protocol was applied to 65 A. butzleri isolates to determine their MICs of 31 antimicrobial agents. Results: The statistical analysis revealed that the most homogeneous MIC values were obtained with CAMHB + 5% FBS and reading of MIC values after 24 h of incubation. The standardized method was successful for AST of all 65 A. butzleri isolates. MIC values were distributed unimodally for most antimicrobial agents. However, one field isolate showed elevated MIC values of gentamicin, streptomycin, tetracycline and trimethoprim/sulfamethoxazole. Conclusions: This study presents a new protocol for AST of A. butzleri by broth microdilution and shows the distribution of MIC values of 31 antimicrobial agents for a collection of A. butzleri isolates from different origins.


Assuntos
Antibacterianos/farmacologia , Arcobacter/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Arcobacter/isolamento & purificação , Técnicas Bacteriológicas , Gentamicinas/farmacologia , Humanos , Modelos Logísticos , Testes de Sensibilidade Microbiana/normas , Tetraciclina/farmacologia
16.
Clin Infect Dis ; 63(10): 1349-1352, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27655995

RESUMO

We investigated the evolution and epidemiology of a novel livestock-associated methicillin-resistant Staphylococcus aureus strain, which colonizes and infects urban-dwelling Danes even without a Danish animal reservoir. Genetic evidence suggests both poultry and human adaptation, with poultry meat implicated as a probable source.


Assuntos
Doenças Transmitidas por Alimentos/microbiologia , Gado/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas , Adulto , Idoso , Animais , DNA Bacteriano/genética , Dinamarca , Feminino , Microbiologia de Alimentos , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Vison/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Aves Domésticas/microbiologia , Estudos Retrospectivos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/transmissão , Infecções Estafilocócicas/veterinária
17.
Antimicrob Agents Chemother ; 60(12): 7200-7205, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27671067

RESUMO

A total of 57 methicillin-resistant Staphylococcus aureus (MRSA) isolates and 475 methicillin-resistant coagulase-negative staphylococci (MRCoNS) collected from pigs in the Guangdong province of China in 2014 were investigated for the presence of the novel oxazolidinone-phenicol resistance gene optrA The optrA gene was detected in 6.9% (n = 33) of the MRCoNS, all of which were Staphylococcus sciuri isolates, but in none of the MRSA isolates. Five optrA-carrying methicillin-resistant (MR) S. sciuri isolates also harbored the multiresistance gene cfr Pulsed-field gel electrophoresis (PFGE) and dru typing of the 33 optrA-carrying MR S. sciuri isolates revealed 25 patterns and 5 sequence types, respectively. S1 nuclease PFGE and Southern blotting confirmed that optrA was located in the chromosomal DNAs of 29 isolates, including 1 cfr-positive isolate. The remaining four isolates harbored a ∼35-kb pWo28-3-like plasmid on which optrA and cfr were located together with other resistance genes, as confirmed by sequence analysis. Six different types of genetic environments (types I to VI) of the chromosome-borne optrA genes were identified; these types had the optrA gene and its transcriptional regulator araC in common. Tn558 was found to be associated with araC-optrA in types II to VI. The optrA gene in types II and III was found in close proximity to the ccr gene complex of the respective staphylococcal cassette chromosome mec element (SCCmec). Since oxazolidinones are last-resort antimicrobial agents for the control of serious infections caused by methicillin-resistant staphylococci in humans, the location of the optrA gene close to the ccr complex is an alarming observation.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Oxazolidinonas/farmacologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Animais , Fator de Transcrição AraC/genética , China , Resistência Microbiana a Medicamentos/genética , Eletroforese em Gel de Campo Pulsado , Resistência a Meticilina/genética , Tipagem Molecular , Staphylococcus/isolamento & purificação , Suínos
18.
Antimicrob Agents Chemother ; 60(5): 3007-15, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26953212

RESUMO

Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins; cfr, encoding phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A (PhLOPSA) resistance; its homologue cfr(B); or optrA, conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr is even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing, and conjugative transfer. Whole-genome sequencing was used for single-nucleotide variant (SNV) analysis, multilocus sequence typing, L protein mutation identification, cfr plasmid sequence analysis, and optrA and cfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles, compared to 1/5 in M13/0401. Both isolates were sequence type 22 MRSA staphylococcal cassette chromosome mec type IV (ST22-MRSA-IV)/spa type t032 isolates, harbored cfr, exhibited the PhLOPSA phenotype, and lacked optrA and cfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid. This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlight that prudent management of linezolid use is essential.


Assuntos
Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana Múltipla/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Plasmídeos/genética , RNA Ribossômico 23S/genética , Infecções Estafilocócicas/genética , Staphylococcus aureus/efeitos dos fármacos
20.
J Antimicrob Chemother ; 71(6): 1466-73, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26903276

RESUMO

OBJECTIVES: Aim of this study was to analyse 17 non-related Enterococcus faecalis isolates of human and animal origin for the genetic environment of the novel oxazolidinone/phenicol resistance gene optrA. METHODS: WGS and de novo assembly were conducted to analyse the flanking sequences of the optrA gene in the 17 E. faecalis isolates. When optrA was located on a plasmid, conjugation assays were performed to check whether the plasmids are conjugative and to confirm the resistance phenotype associated with these plasmids. RESULTS: All nine optrA-carrying plasmids were conjugated into E. faecalis JH2-2 and the transconjugants exhibited the optrA-associated phenotype. In these plasmids, an IS1216E element was detected either upstream and/or downstream of the optrA gene. In eight plasmids, the phenicol exporter gene fexA was found upstream of optrA and in six plasmids, a novel erm(A)-related gene for macrolide-lincosamide-streptogramin B resistance was detected downstream of optrA. When located in the chromosomal DNA, the optrA gene was found downstream of the transcriptional regulator gene araC in four isolates, or downstream of the fexA gene in another four isolates. Integration of the optrA region into a Tn558-Tn554 hybrid, located in the chromosomal radC gene, was seen in two isolates. CONCLUSIONS: The findings of the present study extend the current knowledge about the genetic environment of optrA and suggest that IS1216E elements play an important role in the dissemination of optrA among different types of enterococcal plasmids. The mechanism underlying the integration of optrA into the chromosomal DNA requires further investigation.


Assuntos
Anti-Infecciosos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Oxazolidinonas/farmacologia , Tianfenicol/farmacologia , Animais , Galinhas , Conjugação Genética , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana , Enterococcus faecalis/isolamento & purificação , Transferência Genética Horizontal , Genes Bacterianos , Humanos , Plasmídeos/análise , Análise de Sequência de DNA , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA