Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Skin Res Technol ; 25(5): 653-661, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30932226

RESUMO

BACKGROUND: Skin hydration is essential for maintaining stratum corneum (SC) flexibility and facilitating maturation events. Moisturizers contain multiple ingredients to maintain and improve skin hydration although a complete understanding of hydration mechanisms is lacking. The ability to differentiate the source of the hydration (water from the environment or deeper skin regions) upon application of product will aid in designing more efficacious formulations. MATERIALS AND METHODS: Novel confocal Raman microscopy (CRM) experiments allow us to investigate mechanisms and levels of hydration in the SC. Using deuterium oxide (D2 O) as a probe permits the differentiation of endogenous water (H2 O) from exogenous D2 O. Following topical application of D2 O, we first compare in vivo skin depth profiles with those obtained using ex vivo skin. Additional ex vivo experiments are conducted to quantify the kinetics of D2 O diffusion in the epidermis by introducing D2 O under the dermis. RESULTS: Relative D2 O depth profiles from in vivo and ex vivo measurements compare well considering procedural and instrumental differences. Additional in vivo experiments where D2 O was applied following topical glycerin application increased the longevity of D2 O in the SC. Reproducible rates of D2 O diffusion as a function of depth have been established for experiments where D2 O is introduced under ex vivo skin. CONCLUSION: Unique information regarding hydration mechanisms are obtained from CRM experiments using D2 O as a probe. The source and relative rates of hydration can be delineated using ex vivo skin with D2 O underneath. One can envision comparing these depth-dependent rates in the presence and absence of topically applied hydrating agents to obtain mechanistic information.


Assuntos
Estado de Hidratação do Organismo/fisiologia , Fenômenos Fisiológicos da Pele , Água Corporal/fisiologia , Óxido de Deutério/farmacologia , Epiderme/fisiologia , Humanos , Microscopia Confocal/métodos , Análise Espectral Raman/métodos , Perda Insensível de Água/fisiologia
2.
J Cosmet Sci ; 68(1): 42-47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29465381

RESUMO

Polyglycerol (PG) is a well-known cosmetic ingredient and important precursor for the synthesis of a variety of cosmetic ingredients, such as surfactants, emulsifiers, and conditioning agents for hair and skin. When derived from renewable resources, PG can provide a more sustainable platform for the development of new ingredients with improved performance in cosmetic applications. This paper will discuss recent advances in the utilization of bio-based PG ingredients as alternatives to traditional ethoxylate chemistries for mild nonionic surfactants, substantive humectants, and micellar thickeners.


Assuntos
Cosméticos/síntese química , Cosméticos/farmacologia , Glicerol/química , Glicerol/farmacologia , Polímeros/química , Polímeros/farmacologia , Pele/efeitos dos fármacos , Animais , Desenho de Fármacos , Cabelo/efeitos dos fármacos , Humanos , Polissorbatos/química , Polissorbatos/farmacologia , Envelhecimento da Pele/efeitos dos fármacos
3.
Altern Lab Anim ; 44(6): 523-532, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28094534

RESUMO

The personal care industry is focused on developing safe, more efficacious, and increasingly milder products, that are routinely undergoing preclinical and clinical testing before becoming available for consumer use on skin. In vitro systems based on skin reconstructed equivalents are now established for the preclinical assessment of product irritation potential and as alternative testing methods to the classic Draize rabbit skin irritation test. We have used the 3-D EpiDerm™ model system to evaluate tissue viability and primary cytokine interleukin-1α release as a way to evaluate the potential dermal irritation of 224 non-ionic, amphoteric and/or anionic surfactant-containing formulations, or individual raw materials. As part of our testing programme, two representative benchmark materials with known clinical skin irritation potential were qualified through repeated testing, for use as references for the skin irritation evaluation of formulations containing new surfactant ingredients. We have established a correlation between the in vitro screening approach and clinical testing, and are continually expanding our database to enhance this correlation. This testing programme integrates the efforts of global manufacturers of personal care products that focus on the development of increasingly milder formulations to be applied to the skin, without the use of animal testing.


Assuntos
Alternativas ao Uso de Animais , Cosméticos/toxicidade , Interleucina-1alfa/análise , Higiene da Pele , Testes de Irritação da Pele , Tensoativos/toxicidade , Humanos
4.
J Biomed Opt ; 23(3): 1-4, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29508565

RESUMO

Two-photon fluorescence (TPF) and second harmonic generation (SHG) microscopy provide direct visualization of the skin dermal fibers in vivo. A typical method for analyzing TPF/SHG images involves averaging the image intensity and therefore disregarding the spatial distribution information. The goal of this study is to develop an algorithm to document age-related effects of the dermal matrix. TPF and SHG images were acquired from the upper inner arm, volar forearm, and cheek of female volunteers of two age groups: 20 to 30 and 60 to 80 years of age. The acquired images were analyzed for parameters relating to collagen and elastin fiber features, such as orientation and density. Both collagen and elastin fibers showed higher anisotropy in fiber orientation for the older group. The greatest difference in elastin fiber anisotropy between the two groups was found for the upper inner arm site. Elastin fiber density increased with age, whereas collagen fiber density decreased with age. The proposed analysis considers the spatial information inherent to the TPF and SHG images and provides additional insights into how the dermal fiber structure is affected by the aging process.


Assuntos
Envelhecimento/fisiologia , Derme/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Colágeno/química , Derme/química , Elastina/química , Humanos , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA