Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 292(1): 185-195, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27660387

RESUMO

Aquaporin 0 (AQP0), the major intrinsic protein of the eye lens, plays a vital role in maintaining lens clarity by facilitating the transport of water across lens fiber cell membranes. AQP0 reduces its osmotic water permeability constant (Pf) in response to increases in the external calcium concentration, an effect that is mediated by an interaction with the calcium-binding messenger protein, calmodulin (CaM), and phosphorylation of the CaM-binding site abolishes calcium sensitivity. Despite recent structural characterization of the AQP0-CaM complex, the mechanism by which CaM modulates AQP0 remains poorly understood. By combining atomistic molecular dynamics simulations and oocyte permeability assays, we conclude that serine phosphorylation of AQP0 does not inhibit CaM binding to the whole AQP0 protein. Instead, AQP0 phosphorylation alters calcium sensitivity by modifying the AQP0-CaM interaction interface, particularly at an arginine-rich loop that connects the fourth and fifth transmembrane helices. This previously unexplored loop, which sits outside of the canonical CaM-binding site on the AQP0 cytosolic face, mechanically couples CaM to the pore-gating residues of the second constriction site. We show that this allosteric loop is vital for CaM regulation of the channels, facilitating cooperativity between adjacent subunits and regulating factors such as serine phosphorylation. Similar allosteric interactions may also mediate CaM modulation of the properties of other CaM-regulated proteins.


Assuntos
Aquaporinas/metabolismo , Calmodulina/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Proteínas do Olho/metabolismo , Oócitos/metabolismo , Xenopus laevis/metabolismo , Animais , Aquaporinas/química , Cálcio/metabolismo , Calmodulina/química , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Proteínas do Olho/química , Humanos , Simulação de Dinâmica Molecular , Oócitos/citologia , Fosforilação , Estrutura Secundária de Proteína , Xenopus laevis/crescimento & desenvolvimento
2.
Biochemistry ; 54(49): 7272-82, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26598276

RESUMO

Leishmania major, the parasitic causative agent of leishmaniasis, produces a heme peroxidase (LmP), which catalyzes the peroxidation of mitochondrial cytochrome c (LmCytc) for protection from reactive oxygen species produced by the host. The association of LmP and LmCytc, which is known from kinetics measurements to be very fast (∼10(8) M(-1) s(-1)), does not involve major conformational changes and has been suggested to be dominated by electrostatic interactions. We used Brownian dynamics simulations to investigate the mechanism of formation of the LmP-LmCytc complex. Our simulations confirm the importance of electrostatic interactions involving the negatively charged D211 residue at the LmP active site, and reveal a previously unrecognized role in complex formation for negatively charged residues in helix A of LmP. The crystal structure of the D211N mutant of LmP reported herein is essentially identical to that of wild-type LmP, reinforcing the notion that it is the loss of charge at the active site, and not a change in structure, that reduces the association rate of the D211N variant of LmP. The Brownian dynamics simulations further show that complex formation occurs via a "bind and crawl" mechanism, in which LmCytc first docks to a location on helix A that is far from the active site, forming an initial encounter complex, and then moves along helix A to the active site. An atomistic molecular dynamics simulation confirms the helix A binding site, and steady state activity assays and stopped-flow kinetics measurements confirm the role of helix A charges in the association mechanism.


Assuntos
Simulação por Computador , Citocromos c/química , Leishmania major/enzimologia , Simulação de Dinâmica Molecular , Peroxidase/química , Proteínas de Protozoários/química , Domínio Catalítico , Humanos , Cinética , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/química
3.
Biochemistry ; 53(9): 1435-46, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24533927

RESUMO

The crystal structure of the flavin mononucleotide (FMN)-containing redox partner to P450cin, cindoxin (Cdx), has been determined to 1.3 Å resolution. The overall structure is similar to that of the FMN domain of human cytochrome P450 reductase. A Brownian dynamics-molecular dynamics docking method was used to produce a model of Cdx with its redox partner, P450cin. This Cdx-P450cin model highlights the potential importance of Cdx Tyr96 in bridging the FMN and heme cofactors as well P450cin Arg102 and Arg346. Each of the single-site Ala mutants exhibits ~10% of the wild-type activity, thus demonstrating the importance of these residues for binding and/or electron transfer. In the well-studied P450cam system, redox partner binding stabilizes the open low-spin conformation of P450cam and greatly decreases the stability of the oxy complex. In sharp contrast, Cdx does not shift P450cin to a low-spin state, although the stability of oxy-P450cin is decreased 10-fold in the presence of Cdx. This indicates that Cdx may have a modest effect on the open-closed equilibrium in P450cin compared to that in P450cam. It has been postulated that part of the effector role of Pdx on P450cam is to promote a significant structural change that makes available a proton relay network involving Asp251 required for O2 activation. The structure around the corresponding Asp in P450cin, Asp241, provides a possible structural reason for why P450cin is less dependent on its redox partner for functionally important structural changes.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sítios de Ligação , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Humanos , Oxirredução , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA