Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 27(10): 3374-3381, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32959415

RESUMO

Reaction of [Pt(DMSO)2 Cl2 ] or [Pd(MeCN)2 Cl2 ] with the electron-rich LH=N,N'-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2 ] (1) but dinuclear [Pd2 L4 ] (2), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L- . The reversibly accessible cations [PtL2 ]+ and [Pd2 L4 ]+ were also studied, the latter as [Pd2 L4 ][B{3,5-(CF3 )2 C6 H3 }4 ] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII (L- )2 ] or [Pt. (L )2 ], [PtII (L0.5- )2 ]+ or [PtIII (L- )2 ]+ , [(PdII )2 (µ-L- )4 ] or [(Pd1.5 )2 (µ-L0.75- )4 ], and [(Pd2.5 )2 (µ-L- )4 ]+ or [(PdII )2 (µ-L0.75- )4 ]+ . In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2 ] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2 L4 ], and the dimetal (Pd2 4+ →Pd2 5+ ) instead of ligand (L- →L ) oxidation of the dinuclear palladium compound.

2.
Chemistry ; 23(10): 2396-2404, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28026054

RESUMO

We present herein the synthesis of three new bis(corrolato-ruthenium(III)) complexes containing unsupported Ru-Ru bonds and their characterization in different redox states. The 1 H NMR spectra of the bis(corrolato-ruthenium(III)) complexes displayed "normal" chemical shifts and the compounds proved to be EPR-silent. Crystallographic characterization of the dimers indicated Ru-Ru distances of 2.175 Å, consistent with a triple bond between the two ruthenium centers. All of the synthesized complexes undergo two successive reversible oxidations and a single reversible reduction. A combination of UV/Vis/NIR/EPR spectroelectrochemical studies and DFT calculations established the redox state distributions in these ruthenium-ruthenium-bonded dimers. Whereas reduction of the dimers is metal-based and leads to metal-metal-bonded mixed-valent RuII -RuIII species, one-electron oxidation largely retains the RuIII -RuIII situation with the generation of metal-bound corrolato radicals. The present study thus concerns the first UV/Vis/NIR/EPR spectroelectrochemical characterization and DFT calculations of ruthenium-ruthenium-bonded rotationally ordered corrole dimers. The mean plane separation between the two corrole units in these dimers is around 3.543 Å, which is in close agreement to that in the "special pair" in chlorophyll. Oxidation of these ruthenium-ruthenium-bonded dimers gives rise to two new electronic absorption bands in the NIR region (similar to those of the special pair), which have apparently not been mentioned/observed in earlier reports on ruthenium-ruthenium-bonded corrole dimers. These bands mainly originate from inter-corrole transitions.

3.
Dalton Trans ; 51(10): 4058-4067, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35175272

RESUMO

The doubly deprotonated bridging ligand L12- derived from 2,6-bis(2-pyridyl)-1,5-dihydro-1',4'-benzoquinono[2',3'-d:5',6'-d']diimidazole H2L1 forms coordination compounds with two bis(2,2'-bipyridine)osmium(II) complex fragments in anti ([1](ClO4)2) and syn configurations ([2](ClO4)2) of {(µ-L1)[Os(bpy)2]2}(ClO4)2, as evident from crystal structure analyses. Exchange of the metal-coordinating 2-pyridyl functions in the bridge through non-coordinating 4-tolyl substituents (L12- → L22-) leads to [3](ClO4)2 which involves chelation of the [Os(bpy)2]2+ groups through imidazole-N and carbonyl-O atoms of the central p-quinone function. In addition to identification, the compounds were subjected to electrochemical (CV, DPV) and spectroelectrochemical (UV-vis-NIR, EPR) analyses of electron transfer, the results being supported by results from TD-DFT calculations. Essential differences between [1n+]/[2n+] and [3n+] systems were found regarding variable but mostly metal centred oxidation, the two processes separated much more for [3n+]. The first reduction is bpy ([1+], [2+]) or quinone ligand centred ([3+]). Electronic structures and electron transfer behaviour are thus highly sensitive to differences of configuration and coordination.

4.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199635

RESUMO

Recently, anionic charges were found to negatively influence the in vitro gastrin-releasing peptide receptor (GRPR) binding parameters of dually radioisotope and fluorescent dye labeled GRPR-specific peptide dimers. From this, the question arose if this adverse impact on in vitro GRP receptor affinities could be mitigated by a higher valency of peptide multimerization. For this purpose, we designed two different hybrid multimodal imaging units (MIUs), comprising either one or two click chemistry-compatible functional groups and reacted them with PESIN (PEG3-BBN7-14, PEG = polyethylene glycol) dimers to obtain a dually labeled peptide homodimer or homotetramer. Using this approach, other dually labeled peptide monomers, dimers, and tetramers can also be obtained, and the chelator and fluorescent dye can be adapted to specific requirements. The MIUs, as well as their peptidic conjugates, were evaluated in terms of their photophysical properties, radiolabeling efficiency with 68Ga and 64Cu, hydrophilicity, and achievable GRP receptor affinities. Here, the hydrophilicity and the GRP receptor binding affinities were found to be especially strongly influenced by the number of negative charges and peptide copies, showing logD (1-octanol-water-distribution coefficient) and IC50 (half maximal inhibitory concentration) values of -2.2 ± 0.1 and 59.1 ± 1.5 nM for the homodimer, and -1.9 ± 0.1 and 99.8 ± 3.2 nM for the homotetramer, respectively. From the obtained data, it can be concluded that the adverse influence of negatively charged building blocks on the in vitro GRP receptor binding properties of dually labeled PESIN multimers can, at least partly, be compensated for by the number of introduced peptide binding motives and the used molecular design.

5.
Chem Commun (Camb) ; 56(80): 12033-12036, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32902528

RESUMO

Reported herein is the coordination of rhenium complexes to tetrazine ligand in [ReCl(CO)3(TzPy)] [1] (TzPy = 3-(2-pyridyl)-1,2,4,5-tetrazine) and the rates of addition of different dienophiles to the tetrazine. Tetrazine coordiation lowers the ΔS‡ contribution to ΔG‡ for iEDDA addition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA