Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(4): 518-531, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35354953

RESUMO

Internal organs heal injuries with new connective tissue, but the cellular and molecular events of this process remain obscure. By tagging extracellular matrix around the mesothelium lining in mouse peritoneum, liver and cecum, here we show that preexisting matrix was transferred across organs into wounds in various injury models. Using proteomics, genetic lineage-tracing and selective injury in juxtaposed organs, we found that the tissue of origin for the transferred matrix likely dictated the scarring or regeneration of the healing tissue. Single-cell RNA sequencing and genetic and chemical screens indicated that the preexisting matrix was transferred by neutrophils dependent on the HSF-integrin AM/B2-kindlin3 cascade. Pharmacologic inhibition of this axis prevented matrix transfer and the formation of peritoneal adhesions. Matrix transfer was thus an early event of wound repair and provides a therapeutic window to dampen scaring across a range of conditions.


Assuntos
Neutrófilos , Peritônio , Animais , Epitélio , Matriz Extracelular , Camundongos , Peritônio/lesões , Cicatrização
2.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38360748

RESUMO

A prominent account of decision-making assumes that information is accumulated until a fixed response threshold is crossed. However, many decisions require weighting of information appropriately against time. Collapsing response thresholds are a mathematically optimal solution to this decision problem. However, our understanding of the neurocomputational mechanisms underlying dynamic response thresholds remains significantly incomplete. To investigate this issue, we used a multistage drift-diffusion model (DDM) and also analyzed EEG ß power lateralization (BPL). The latter served as a neural proxy for decision signals. We analyzed a large dataset (n = 863; 434 females and 429 males) from a speeded flanker task and data from an independent confirmation sample (n = 119; 70 females and 49 males). We showed that a DDM with collapsing decision thresholds, a process wherein the decision boundary reduces over time, captured participants' time-dependent decision policy more accurately than a model with fixed thresholds. Previous research suggests that BPL over motor cortices reflects features of a decision signal and that its peak, coinciding with the motor response, may serve as a neural proxy for the decision threshold. We show that BPL around the response decreased with increasing RTs. Together, our findings offer compelling evidence for the existence of collapsing decision thresholds in decision-making processes.


Assuntos
Tomada de Decisões , Masculino , Feminino , Humanos , Tomada de Decisões/fisiologia , Tempo de Reação/fisiologia
3.
Brain ; 147(1): 201-214, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38058203

RESUMO

Deficits in reward learning are core symptoms across many mental disorders. Recent work suggests that such learning impairments arise by a diminished ability to use reward history to guide behaviour, but the neuro-computational mechanisms through which these impairments emerge remain unclear. Moreover, limited work has taken a transdiagnostic approach to investigate whether the psychological and neural mechanisms that give rise to learning deficits are shared across forms of psychopathology. To provide insight into this issue, we explored probabilistic reward learning in patients diagnosed with major depressive disorder (n = 33) or schizophrenia (n = 24) and 33 matched healthy controls by combining computational modelling and single-trial EEG regression. In our task, participants had to integrate the reward history of a stimulus to decide whether it is worthwhile to gamble on it. Adaptive learning in this task is achieved through dynamic learning rates that are maximal on the first encounters with a given stimulus and decay with increasing stimulus repetitions. Hence, over the course of learning, choice preferences would ideally stabilize and be less susceptible to misleading information. We show evidence of reduced learning dynamics, whereby both patient groups demonstrated hypersensitive learning (i.e. less decaying learning rates), rendering their choices more susceptible to misleading feedback. Moreover, there was a schizophrenia-specific approach bias and a depression-specific heightened sensitivity to disconfirmational feedback (factual losses and counterfactual wins). The inflexible learning in both patient groups was accompanied by altered neural processing, including no tracking of expected values in either patient group. Taken together, our results thus provide evidence that reduced trial-by-trial learning dynamics reflect a convergent deficit across depression and schizophrenia. Moreover, we identified disorder distinct learning deficits.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico , Transtorno Depressivo Maior/complicações , Depressão , Aprendizagem , Recompensa
4.
Cereb Cortex ; 33(5): 1768-1781, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35510942

RESUMO

Under high cognitive demands, older adults tend to resort to simpler, habitual, or model-free decision strategies. This age-related shift in decision behavior has been attributed to deficits in the representation of the cognitive maps, or state spaces, necessary for more complex model-based decision-making. Yet, the neural mechanisms behind this shift remain unclear. In this study, we used a modified 2-stage Markov task in combination with computational modeling and single-trial EEG analyses to establish neural markers of age-related changes in goal-directed decision-making under different demands on the representation of state spaces. Our results reveal that the shift to simpler decision strategies in older adults is due to (i) impairments in the representation of the transition structure of the task and (ii) a diminished signaling of the reward value associated with decision options. In line with the diminished state space hypothesis of human aging, our findings suggest that deficits in goal-directed, model-based behavior in older adults result from impairments in the representation of state spaces of cognitive tasks.


Assuntos
Tomada de Decisões , Motivação , Humanos , Idoso , Recompensa , Envelhecimento/psicologia , Simulação por Computador
5.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373159

RESUMO

Periodontal ligament fibroblasts (PdLFs) exert important functions in oral tissue and bone remodeling following mechanical forces, which are specifically applied during orthodontic tooth movement (OTM). Located between the teeth and the alveolar bone, mechanical stress activates the mechanomodulatory functions of PdLFs including regulating local inflammation and activating further bone-remodeling cells. Previous studies suggested growth differentiation factor 15 (GDF15) as an important pro-inflammatory regulator during the PdLF mechanoresponse. GDF15 exerts its effects through both intracrine signaling and receptor binding, possibly even in an autocrine manner. The extent to which PdLFs are susceptible to extracellular GDF15 has not yet been investigated. Thus, our study aims to examine the influence of GDF15 exposure on the cellular properties of PdLFs and their mechanoresponse, which seems particularly relevant regarding disease- and aging-associated elevated GDF15 serum levels. Therefore, in addition to investigating potential GDF15 receptors, we analyzed its impact on the proliferation, survival, senescence, and differentiation of human PdLFs, demonstrating a pro-osteogenic effect upon long-term stimulation. Furthermore, we observed altered force-related inflammation and impaired osteoclast differentiation. Overall, our data suggest a major impact of extracellular GDF15 on PdLF differentiation and their mechanoresponse.


Assuntos
Fator 15 de Diferenciação de Crescimento , Ligamento Periodontal , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Células Cultivadas , Diferenciação Celular , Fibroblastos/metabolismo , Inflamação/metabolismo , Técnicas de Movimentação Dentária
6.
Neuroimage ; 259: 119437, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788041

RESUMO

Optimal decision making in complex environments requires dynamic learning from unexpected events. To speed up learning, we should heavily weight information that indicates state-action-outcome contingency changes and ignore uninformative fluctuations in the environment. Often, however, unrelated information is hard to ignore and can potentially bias our learning. Here we used computational modelling and EEG to investigate learning behaviour in a modified probabilistic choice task that introduced two task-irrelevant factors that were uninformative for optimal task performance, but nevertheless could potentially bias learning: pay-out magnitudes were varied randomly and, occasionally, feedback presentation was enhanced by visual surprise. We found that participants' overall good learning performance was biased by distinct effects of these non-normative factors. On the neural level, these parameters are represented in a dynamic and spatiotemporally dissociable sequence of EEG activity. Later in feedback processing the different streams converged on a central to centroparietal positivity reflecting a signal that is interpreted by downstream learning processes that adjust future behaviour.


Assuntos
Tomada de Decisões , Eletroencefalografia , Viés , Retroalimentação , Humanos , Recompensa
7.
Neuroimage ; 257: 119322, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35577025

RESUMO

The feedback-related negativity (FRN) is a well-established electrophysiological correlate of feedback-processing. However, there is still an ongoing debate whether the FRN is driven by negative or positive reward prediction errors (RPE), valence of feedback, or mere surprise. Our study disentangles independent contributions of valence, surprise, and RPE on the feedback-related neuronal signal including the FRN and P3 components using the statistical power of a sample of N = 992 healthy individuals. The participants performed a modified time-estimation task, while EEG from 64 scalp electrodes was recorded. Our results show that valence coding is present during the FRN with larger amplitudes for negative feedback. The FRN is further modulated by surprise in a valence-dependent way being more positive-going for surprising positive outcomes. The P3 was strongly driven by both global and local surprise, with larger amplitudes for unexpected feedback and local deviants. Behavioral adaptations after feedback and FRN just show small associations. Results support the theory of the FRN as a representation of a signed RPE. Additionally, our data indicates that surprising positive feedback enhances the EEG response in the time window of the P3. These results corroborate previous findings linking the P3 to the evaluation of PEs in decision making and learning tasks.


Assuntos
Potenciais Evocados , Retroalimentação Psicológica , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Retroalimentação , Retroalimentação Psicológica/fisiologia , Humanos , Recompensa
8.
Behav Res Methods ; 54(3): 1416-1427, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34713426

RESUMO

We typically slow down after committing an error, an effect termed post-error slowing (PES). Traditionally, PES has been calculated by subtracting post-correct from post-error RTs. Dutilh et al. (Journal of Mathematical Psychology, 56(3), 208-216, 2012), however, showed PES values calculated in this way are potentially biased. Therefore, they proposed to compute robust PES scores by subtracting pre-error RTs from post-error RTs. Based on data from a large-scale study using the flanker task, we show that both traditional and robust PES estimates can be biased. The source of the bias are differential imbalances in the percentage of congruent vs. incongruent post-correct, pre-error, and post-error trials. Specifically, we found that post-correct, pre-error, and post-error trials were more likely to be congruent than incongruent, with the size of the imbalance depending on the trial type as well as the length of the response-stimulus interval (RSI). In our study, for trials preceded by a 700-ms RSI, the percentages of congruent trials were 62% for post-correct trials, 66% for pre-error trials, and 56% for post-error trials. Relative to unbiased estimates, these imbalances inflated traditional PES estimates by 37% (9 ms) and robust PES estimates by 42% (16 ms) when individual-participant means were calculated. When individual-participant medians were calculated, the biases were even more pronounced (40% and 50% inflation, respectively). To obtain unbiased PES scores for interference tasks, we propose to compute unweighted individual-participant means by initially calculating mean RTs for congruent and incongruent trials separately, before averaging congruent and incongruent mean RTs to calculate means for post-correct, pre-error and post-error trials.


Assuntos
Desempenho Psicomotor , Humanos , Tempo de Reação
9.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 280-292, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27845208

RESUMO

Cells receive many different environmental clues to which they must adapt accordingly. Therefore, a complex signal transduction network has evolved. Cellular signal transduction is a highly dynamic process, in which the specific outcome is a result of the exact spatial and temporal resolution of single sub-events. While conventional techniques, like chemical inducer systems, have led to a sound understanding of the architecture of signal transduction pathways, the spatiotemporal aspects were often impossible to resolve. Optogenetics, based on genetically encoded light-responsive proteins, has the potential to revolutionize manipulation of signal transduction processes. Light can be easily applied with highest precision and minimal invasiveness. This review focuses on examples of optogenetic systems which were generated and applied to manipulate non-neuronal mammalian signaling processes at various stages of signal transduction, from cell membrane through cytoplasm to nucleus. Further, the future of optogenetic signaling will be discussed.


Assuntos
Luz , Mamíferos/metabolismo , Optogenética/métodos , Transdução de Sinais , Animais , Humanos , Proteínas de Membrana/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 89-100, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27769899

RESUMO

Scaffold proteins are hubs for the coordination of intracellular signaling networks. The scaffold protein CNK1 promotes several signal transduction pathway. Here we demonstrate that sterile motif alpha (SAM) domain-dependent oligomerization of CNK1 stimulates CNK1-mediated signaling in growth factor-stimulated cells. We identified Ser22 located within the SAM domain as AKT-dependent phosphorylation site triggering CNK1 oligomerization. Oligomeric CNK1 increased the affinity for active AKT indicating a positive AKT feedback mechanism. A CNK1 mutant lacking the SAM domain and the phosphorylation-defective mutant CNK1S22A antagonizes oligomerization and prevents CNK1-driven cell proliferation and matrix metalloproteinase 14 promoter activation. The phosphomimetic mutant CNK1S22D constitutively oligomerizes and stimulates CNK1 downstream signaling. Searching the COSMIC database revealed Ser22 as putative target for oncogenic activation of CNK1. Like the phosphomimetic mutant CNK1S22D, the oncogenic mutant CNK1S22F forms clusters in serum-starved cells comparable to clusters of CNK1 in growth factor-stimulated cells. CNK1 clusters induced by activating Ser22 mutants correlate with enhanced cell invasion and binding to and activation of ADP ribosylation factor 1 associated with tumor formation. Mutational analysis indicate that EGF-triggered phosphorylation of Thr8 within the SAM domain prevents AKT binding and antagonizes CNK1-mediated AKT signaling. Our findings reveal SAM domain-dependent oligomerization by AKT as switch for CNK1 activation.


Assuntos
Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Proto-Oncogênicas c-akt/genética , Motivo Estéril alfa , Adesão Celular , Movimento Celular , Proliferação de Células , Bases de Dados Genéticas , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Mimetismo Molecular , Mutação , Fosforilação , Regiões Promotoras Genéticas , Multimerização Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
11.
J Neurosci ; 35(21): 8181-90, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019334

RESUMO

Serotonin (5-HT) has been hypothesized to be implicated in performance monitoring by promoting behavioral inhibition in the face of aversive events. However, it is unclear whether this is restricted to external (punishment) or includes internal (response errors) events. The aim of the current study was to test whether higher 5-HT levels instigate inhibition specifically in the face of errors, measured as post-error slowing (PES), and whether this is represented in electrophysiological correlates of error processing, namely error-related negativity (ERN) and positivity. Therefore, from a large sample of human subjects (n = 878), two extreme groups were formed regarding hypothesized high and low 5-HT transporter (5-HTT) expression based on 5-HTTLPR and two additional single nucleotide polymorphisms (rs25531, rs25532). Seventeen higher (LL) and 15 lower (SS) expressing Caucasian subjects were administered the selective serotonin reuptake inhibitor (SSRI) citalopram (10 mg) intravenously in a double-blind crossover design. We found pharmacogenetic evidence for a role of 5-HT in mediating PES: SSRI administration increased PES in both genetic groups, and SS subjects displayed higher PES. These effects were absent on post-conflict slowing. However, ERN and error positivity were unaffected by pharmacogenetic factors, but ERN was decoupled from behavioral adaptation by SSRI administration in the LL group. Thus, pharmacogenetic evidence suggests that increased 5-HT levels lead to behavioral inhibition in the context of internal aversive events, but electrophysiological correlates of performance monitoring appear unrelated to the 5-HT system. Therefore, our findings are consistent with theories suggesting that 5-HT mediates the link between aversive processing and inhibition.


Assuntos
Eletroencefalografia/efeitos dos fármacos , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Desempenho Psicomotor/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Método Duplo-Cego , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Desempenho Psicomotor/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Adulto Jovem
12.
Biochim Biophys Acta ; 1853(11 Pt A): 2847-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319181

RESUMO

Scaffold proteins are multidomain proteins without enzymatic function that play a central role in coordinating signaling processes. The scaffold protein CNK1 interacts with pathway-specific signaling proteins and thereby regulates these respective pathways. Here, we revealed tyrosine phosphorylation as a critical regulation mechanism to control the function of CNK1. We identified Tyr 26 as a PDGF-induced and, additionally, Tyr 519 and Tyr 665 as SRC-induced tyrosine phosphorylation sites. Phosphomimetic mutants indicate that phosphorylation of Tyr 519 recruits CNK1 to the nucleus and additional phosphorylation of Tyr 26 enables CNK1 to promote SRE-dependent gene expression. Contrary, mutants preventing tyrosine phosphorylation promote matrix metalloproteinase MMP14 promoter activity. CNK1-driven cell proliferation partially depends on its tyrosine phosphorylation. Upon PDGF stimulation, CNK1 is recruited to the plasma membrane mediated by SRC. Knock down of CNK1 prevents PDGF-induced SRE-dependent gene expression, MMP14 promoter activity and cell proliferation. Thus, tyrosine phosphorylation is an important mechanism to control the subcellular localization of CNK1 and its distinct biological functions.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteinase 14 da Matriz/biossíntese , Regiões Promotoras Genéticas/fisiologia , Quinases da Família src/metabolismo , Membrana Celular/enzimologia , Membrana Celular/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metaloproteinase 14 da Matriz/genética , Mutação , Fosforilação/fisiologia , Transporte Proteico/fisiologia , Tirosina/genética , Tirosina/metabolismo , Quinases da Família src/genética
13.
Neuroimage ; 116: 59-67, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25957993

RESUMO

The brain's serotonergic (5-HT) system has been implicated in controlling impulsive behavior and attentional orienting and linked to impulse control and anxiety related disorders. However, interactions between genotypical variation and responses to serotonergic drugs impede both treatment efficacy and neuroscientific research. We examine behavioral and electrophysiological responses to acute intravenous administration of a selective serotonin reuptake inhibitor (SSRI) while controlling for major genetic differences regarding 5-HT transporter (5-HTT) genotypes. Out of a genotyped sample of healthy Caucasian subjects (n=878) two extreme-groups regarding 5-HTT genotypes were selected (n=32). A homozygous high-expressing group based on tri-allelic 5-HTTLPR and rs25532 (LAC/LAC=LL) was compared to homozygous S allele carriers (SS). Both groups were administered a low dose of citalopram (10mg) intravenously in a double blind crossover fashion and performed a novelty NoGo paradigm while high density EEG was recorded. Interactions between drug and genotype were seen on both behavioral and neurophysiological levels. Reaction slowing following inhibitory events was decreased by the administration of citalopram in the LL but not SS group. This was accompanied by decreases in the amplitude of the inhibitory N2 EEG component and the P3b in the LL group, which was not seen in the SS group. SS subjects showed an increase in P3a amplitudes following SSRI administration to any type of deviant stimulus possibly reflecting increased attentional capture. The acute SSRI response on inhibitory processes and attentional orienting interacts with genotypes regulating 5-HTT gene expression. SS subjects may show increased attentional side effects reflected in increases in P3a amplitudes which could contribute to treatment discontinuation. Inhibitory processes and their neural correlates are affected only in LL subjects. These findings may indicate an underlying mechanism that could relate genotypical differences to altered side effect profiles and drug responses and are compatible with a non-monotonic relationship between 5-HT levels and optimal functioning.


Assuntos
Atenção/efeitos dos fármacos , Atenção/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Citalopram/administração & dosagem , Inibição Psicológica , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
14.
Sci Rep ; 13(1): 19180, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932359

RESUMO

Performance monitoring (PM) is a vital component of adaptive behavior and known to be influenced by motivation. We examined effects of potential gain (PG) and loss avoidance (LA) on neural correlates of PM at different processing stages, using a task with trial-based changes in these motivational contexts. Findings suggest more attention is allocated to the PG context, with higher amplitudes for respective correlates of stimulus and feedback processing. The PG context favored rapid responses, while the LA context emphasized accurate responses. Lower response thresholds in the PG context after correct responses derived from a drift-diffusion model also indicate a more approach-oriented response style in the PG context. This cognitive shift is mirrored in neural correlates: negative feedback in the PG context elicited a higher feedback-related negativity (FRN) and higher theta power, whereas positive feedback in the LA context elicited higher P3a and P3b amplitudes, as well as higher theta power. There was no effect of motivational context on response-locked brain activity. Given the similar frequency of negative feedback in both contexts, the elevated FRN and theta power in PG trials cannot be attributed to variations in reward prediction error. The observed variations in the FRN indicate that the effect of outcome valence is modulated by motivational salience.


Assuntos
Eletroencefalografia , Fenômenos Fisiológicos do Sistema Nervoso , Potenciais Evocados/fisiologia , Motivação , Retroalimentação Psicológica/fisiologia , Recompensa
15.
Nat Protoc ; 18(10): 2876-2890, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558896

RESUMO

Connective tissues are essential building blocks for organ development, repair and regeneration. However, we are at the early stages of understanding connective tissue dynamics. Here, we detail a method that enables in vivo fate mapping of organ extracellular matrix (ECM) by taking advantage of a crosslinking chemical reaction between amine groups and N-hydroxysuccinimide esters. This methodology enables robust labeling of ECM proteins, which complement previous affinity-based single-protein methods. This protocol is intended for entry-level scientists and the labeling step takes between 5 and 10 min. ECM 'tagging' with fluorophores using N-hydroxysuccinimide esters enables visualization of ECM spatial modifications and is particularly useful to study connective tissue dynamics in organ fibrosis, tumor stroma formation, wound healing and regeneration. This in vivo chemical fate mapping methodology is highly versatile, regardless of the tissue/organ system, and complements cellular fate-mapping techniques. Furthermore, as the basic chemistry of proteins is highly conserved between species, this method is also suitable for cross-species comparative studies of ECM dynamics.


Assuntos
Matriz Extracelular , Succinimidas , Matriz Extracelular/metabolismo , Tecido Conjuntivo , Proteínas da Matriz Extracelular/metabolismo
16.
Addict Biol ; 16(4): 620-3, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21762290

RESUMO

Following recent advances in neuromodulation therapy for mental disorders, we treated one patient with severe alcohol addiction with deep brain stimulation (DBS) of the nucleus accumbens (NAc). Before and one year following the surgery, we assessed the effects of DBS within the NAc on the addiction as well as on psychometric scores and electrophysiological measures of cognitive control. In our patient, DBS achieved normalization of addictive behavior and craving. An electrophysiological marker of error processing (the error-related negativity) linked to anterior mid-cingulate cortex (aMCC) functioning was altered through DBS, an effect that could be reversed by periods without stimulation. Thus, this case supports the hypothesis that DBS of the NAc could have a positive effect on addiction trough a normalization of craving associated with aMCC dysfunction.


Assuntos
Alcoolismo/fisiopatologia , Alcoolismo/reabilitação , Atenção/fisiologia , Conscientização/fisiologia , Variação Contingente Negativa/fisiologia , Estimulação Encefálica Profunda/métodos , Função Executiva/fisiologia , Giro do Cíngulo/fisiopatologia , Motivação/fisiologia , Núcleo Accumbens/fisiopatologia , Idoso , Eletroencefalografia , Potenciais Evocados/fisiologia , Humanos , Masculino , Processamento de Sinais Assistido por Computador
17.
Neuroimage Clin ; 31: 102746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34229156

RESUMO

BACKGROUND: Symptoms of obsessive-compulsive disorder (OCD) are partly related to impaired cognitive control processes and theta modulations constitute an important electrophysiological marker for cognitive control processes such as signaling negative performance feedback in a fronto-striatal network. Deep brain stimulation (DBS) targeting the anterior limb of the internal capsule (ALIC)/nucleus accumbens (NAc) shows clinical efficacy in OCD, while the exact influence on the performance monitoring system remains largely unknown. METHODS: Seventeen patients with treatment-refractory OCD performed a probabilistic reinforcement learning task. Analyses were focused on 4-8 Hz (theta) power, intertrial phase coherence (ITPC) and debiased weighted Phase-Lag Index (dwPLI) in response to negative performance feedback. Combined EEG and local field potential (LFP) recordings were obtained shortly after DBS electrode implantation to investigate fronto-striatal network modulations. To assess the impact of clinically effective DBS on negative performance feedback modulations, EEG recordings were obtained pre-surgery and at follow-up with DBS on and off. RESULTS: Medial frontal cortex ITPC, striatal ITPC and striato-frontal dwPLI were increased following negative performance feedback. Decreased right-lateralized dwPLI was associated with pre-surgery symptom severity. ITPC was globally decreased during DBS-off. CONCLUSION: We observed a theta phase coherence mediated fronto-striatal performance monitoring network. Within this network, decreased connectivity was related to increased OCD symptomatology, consistent with the idea of impaired cognitive control in OCD. While ALIC/NAc DBS decreased theta network activity globally, this effect was unrelated to clinical efficacy and performance monitoring.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Humanos , Cápsula Interna/diagnóstico por imagem , Núcleo Accumbens , Transtorno Obsessivo-Compulsivo/terapia , Resultado do Tratamento
18.
Cortex ; 126: 39-48, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32062469

RESUMO

OBJECTIVE: Tourette syndrome is a neurodevelopmental disorder putatively associated with a hyperdopaminergic state. Therefore, it seems plausible that excessive dopamine transmission in Tourette syndrome alters the ability to learn based on rewards and punishments. We tested whether Tourette syndrome patients exhibited altered reinforcement learning and corresponding feedback-related EEG deflections. METHODS: We used a reinforcement learning task providing factual and counterfactual feedback in a sample of 15 Tourette syndrome patients and matched healthy controls whilst recording EEG. The paradigm presented various reward probabilities to enforce adaptive adjustments. We employed a computational model to derive estimates of the prediction error, which we used for single-trial regression analysis of the EEG data. RESULTS: We found that Tourette syndrome patients showed increased choice stochasticity compared to controls. The feedback-related negativity represented an axiomatic prediction error for factual feedback and did not differ between groups. We observed attenuated P3a modulation specifically for factual feedback in Tourette syndrome patients, representing impaired coding of attention allocation. CONCLUSION: Our findings indicate that cortical prediction error coding is unaffected by Tourette syndrome. Nonetheless, the transfer of learned values into choice formation is degraded, in line with a hyperdopaminergic state.


Assuntos
Síndrome de Tourette , Dopamina , Humanos , Aprendizagem , Reforço Psicológico , Recompensa
19.
Nat Commun ; 11(1): 3068, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555155

RESUMO

Surgical adhesions are bands of scar tissues that abnormally conjoin organ surfaces. Adhesions are a major cause of post-operative and dialysis-related complications, yet their patho-mechanism remains elusive, and prevention agents in clinical trials have thus far failed to achieve efficacy. Here, we uncover the adhesion initiation mechanism by coating beads with human mesothelial cells that normally line organ surfaces, and viewing them under adhesion stimuli. We document expansive membrane protrusions from mesothelia that tether beads with massive accompanying adherence forces. Membrane protrusions precede matrix deposition, and can transmit adhesion stimuli to healthy surfaces. We identify cytoskeletal effectors and calcium signaling as molecular triggers that initiate surgical adhesions. A single, localized dose targeting these early germinal events completely prevented adhesions in a preclinical mouse model, and in human assays. Our findings classifies the adhesion pathology as originating from mesothelial membrane bridges and offer a radically new therapeutic approach to treat adhesions.


Assuntos
Cálcio/química , Epitélio/metabolismo , Aderências Teciduais/metabolismo , Animais , Sinalização do Cálcio , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Biologia Computacional , Citoesqueleto/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias , Análise de Componente Principal , RNA Interferente Pequeno/metabolismo , Análise de Célula Única
20.
Psychophysiology ; 56(9): e13389, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31054155

RESUMO

Reinforcement learning (RL) theory states that learning is driven by prediction errors (PEs)-the discrepancy between the predicted and actual outcome of an action. When participants learn from their own actions, PEs correlate with the feedback-related negativity (FRN), but it is not clear if the FRN reflects a PE in observational learning. We use a model-based regression analysis of single-trial event-related potentials to determine if the FRN in observational learning is PE driven. Twenty participants (16 female) learned the stimulus-outcome contingencies for a probabilistic three-armed bandit task. They played in pairs, with the acting and observing player switching every one to three trials. An RL-learning algorithm was fit to participants' choices in the task to extract individual PE estimates for every trial of the experiment. In the acting condition, model-estimated PEs covaried positively with neural signal at electrode FCz, 200-350 ms after outcome presentation, which is a typical time frame for the FRN. There was no PE effect in the observation condition in the same time frame. From 300 ms the outcome correlated negatively with the frontal P300 component at FCz and parietal P300 at Pz. At Pz the effect was greater in the acting than the observing condition. The frontal and parietal P300 components have been linked to attentional reorienting and stimulus value updating, respectively. These findings indicate that observed outcomes undergo processing that is distinguishable from directly experienced outcomes in the time windows of the FRN and P3b but that attention dedicated to the two outcomes types is comparable.


Assuntos
Atenção/fisiologia , Potenciais Evocados/fisiologia , Retroalimentação Psicológica/fisiologia , Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Reforço Psicológico , Aprendizado Social , Adulto , Eletroencefalografia , Potenciais Evocados P300/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA