Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38676166

RESUMO

Shoe-based wearable sensor systems are a growing research area in health monitoring, disease diagnosis, rehabilitation, and sports training. These systems-equipped with one or more sensors, either of the same or different types-capture information related to foot movement or pressure maps beneath the foot. This captured information offers an overview of the subject's overall movement, known as the human gait. Beyond sensing, these systems also provide a platform for hosting ambient energy harvesters. They hold the potential to harvest energy from foot movements and operate related low-power devices sustainably. This article proposes two types of strategies (Strategy 1 and Strategy 2) for an energy-autonomous shoe-based system. Strategy 1 uses an accelerometer as a sensor for gait acquisition, which reflects the classical choice. Strategy 2 uses a piezoelectric element for the same, which opens up a new perspective in its implementation. In both strategies, the piezoelectric elements are used to harvest energy from foot activities and operate the system. The article presents a fair comparison between both strategies in terms of power consumption, accuracy, and the extent to which piezoelectric energy harvesters can contribute to overall power management. Moreover, Strategy 2, which uses piezoelectric elements for simultaneous sensing and energy harvesting, is a power-optimized method for an energy-autonomous shoe system.

2.
Proc Biol Sci ; 290(2008): 20231185, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817591

RESUMO

Concerns about widespread human-induced declines in insect populations are mounting, yet little is known about how land-use change modifies both the trends and variability of insect communities, particularly in understudied regions. Here, we examine how the seasonal activity patterns of ants-key drivers of terrestrial ecosystem functioning-vary with anthropogenic land-cover change on a subtropical island landscape, and whether differences in temperature or species composition can explain observed patterns. Using trap captures sampled biweekly over 2 years from a biodiversity monitoring network covering Okinawa Island, Japan, we processed 1.2 million individuals and reconstructed activity patterns within and across habitat types. Forest communities exhibited greater temporal variability of activity than those in more developed areas. Using time-series decomposition to deconstruct this pattern, we found that sites with greater human development exhibited ant communities with diminished seasonality, reduced synchrony and higher stochasticity compared with sites with greater forest cover. Our results cannot be explained by variation in regional or site temperature patterns, or by differences in species richness or composition among sites. Our study raises the possibility that disruptions to natural seasonal patterns of functionally key insect communities may comprise an important and underappreciated consequence of global environmental change that must be better understood across Earth's biomes.


Assuntos
Formigas , Ecossistema , Animais , Humanos , Estações do Ano , Biodiversidade , Florestas
3.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270855

RESUMO

The piezoelectric effect, along with its associated materials, fascinated researchers in all areas of basic sciences and engineering due to its interesting properties and promising potentials. Sensing, actuation, and energy harvesting are major implementations of piezoelectric structures in structural health monitoring, wearable devices, and self-powered systems, to name only a few. The electrical or mechanical impedance of its structure plays an important role in deriving its equivalent model, which in turn helps to predict its behavior for any system-level application, such as with respect to the rectifiers containing diodes and switches, which represent a nonlinear electrical load. In this paper, we study the electrical impedance response of different sizes of commercial piezoelectric discs for a wide range of frequencies (without and with mechanical load for 0.1-1000 kHz with resolution 20 Hz). It shows significant changes in the position of resonant frequency and amplitude of resonant peaks for different diameters of discs and under varying mechanical load conditions, implying variations in the mechanical boundary conditions on the structure. The highlight of our work is the proposed electrical equivalent circuit model for varying mechanically loaded conditions with the help of impedance technique. Our approach is simple and reliable, such that it is suitable for any structure whose accurate material properties and dimensions are unknown.


Assuntos
Impedância Elétrica
4.
Sensors (Basel) ; 22(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161919

RESUMO

Recently, wideband microwave spectroscopy (WBMS) has been applied for material characterization. Blood glucose sensing through microwave spectroscopy is usually done with resonant frequency-domain methods. Time-domain (TD) WBMS is a low-cost and convenient technique that can be used for glucose sensing of the aqueous solution. In this paper, early research for the implementation of a TD dielectric spectroscopy setup for glucose concentration measurement is presented. TD reflected signals from water with different glucose content are calculated using inverse Laplace transform. The proposed setup is a quasi-monostatic setup in which measurements are done with two different devices in the frequency range of 0.1 to 6 GHz to make a comparison between frequency domain (FD) and TD methods. Frequency domain (FD) measurement is performed with VNA and two Vivaldi antennas. Then, TD data is obtained using the transforming option of VNA. Direct TD measurement is operated with a maximum length sequence (m-sequence) transceiver. Measurement and numerical results follow the same trend and show good agreement with each other. A monotonic relation between peaks of TD signals and the corresponding glucose concentration is achieved. The variation of the height of the reflected signal's peak is 0.00002 and 0.0005 for each 50 mg/dL glucose concentration with FD measurements and direct TD measurements, respectively. The glucose concentration range of 25 mg/dL to 400 mg/dL is investigated, and the worst repeatability of this method is 3.65% for 300 mg/dL.


Assuntos
Espectroscopia Dielétrica , Micro-Ondas , Estudos de Viabilidade , Glucose , Água
5.
Sensors (Basel) ; 22(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062385

RESUMO

Diabetes is a chronic and, according to the state of the art, an incurable disease. Therefore, to treat diabetes, regular blood glucose monitoring is crucial since it is mandatory to mitigate the risk and incidence of hyperglycemia and hypoglycemia. Nowadays, it is common to use blood glucose meters or continuous glucose monitoring via stinging the skin, which is classified as invasive monitoring. In recent decades, non-invasive monitoring has been regarded as a dominant research field. In this paper, electrochemical and electromagnetic non-invasive blood glucose monitoring approaches will be discussed. Thereby, scientific sensor systems are compared to commercial devices by validating the sensor principle and investigating their performance utilizing the Clarke error grid. Additionally, the opportunities to enhance the overall accuracy and stability of non-invasive glucose sensing and even predict blood glucose development to avoid hyperglycemia and hypoglycemia using post-processing and sensor fusion are presented. Overall, the scientific approaches show a comparable accuracy in the Clarke error grid to that of the commercial ones. However, they are in different stages of development and, therefore, need improvement regarding parameter optimization, temperature dependency, or testing with blood under real conditions. Moreover, the size of scientific sensing solutions must be further reduced for a wearable monitoring system.


Assuntos
Diabetes Mellitus , Hipoglicemia , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus/diagnóstico , Humanos , Hipoglicemia/diagnóstico , Monitorização Fisiológica , Reprodutibilidade dos Testes
6.
Sensors (Basel) ; 21(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063644

RESUMO

Capsule endoscopy is a well-established diagnostic tool for the gastrointestinal tract. However, the reliable tracking of capsule endoscopes needs further investigation. Recently, the static magnetic differential method for the localization of capsule endoscopes has shown promising results. This method was experimentally validated by investigating the difference in the measured values of the geomagnetic flux density of a representative sensor pair. In the measurements, it was revealed that misalignment of the sensors and ferromagnetic material near the sensor pair had the most significant impact on the differential approach. Besides, a systematical simulation-based study was conducted. Herein, the position and alignment of all sensors of the localization system were randomly varied. Furthermore, root-mean-squared noise was added to the sensor measurements, and the influence of nearby ferromagnetic material was evaluated. Subsequently, non-idealities were applied simultaneously on the proposed localization system, and the entire system was rotated. The proposed method was significantly better than state-of-the-art geomagnetic compensation methods for the localization of capsule endoscopes with mean position and orientation errors of approximately 2 mm and 1°, respectively.


Assuntos
Cápsulas Endoscópicas , Endoscopia por Cápsula , Trato Gastrointestinal , Magnetismo
7.
Sensors (Basel) ; 21(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210020

RESUMO

We discuss two methods to detect the presence and location of a person in an acoustically small-scale room and compare the performances for a simulated person in distances between 1 and 2 m. The first method is Direct Intersection, which determines a coordinate point based on the intersection of spheroids defined by observed distances of high-intensity reverberations. The second method, Sonogram analysis, overlays all channels' room impulse responses to generate an intensity map for the observed environment. We demonstrate that the former method has lower computational complexity that almost halves the execution time in the best observed case, but about 7 times slower in the worst case compared to the Sonogram method while using 2.4 times less memory. Both approaches yield similar mean absolute localization errors between 0.3 and 0.9 m. The Direct Intersection method performs more precise in the best case, while the Sonogram method performs more robustly.


Assuntos
Acústica , Humanos , Ultrassonografia
8.
Sensors (Basel) ; 21(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068628

RESUMO

We propose an asynchronous acoustic chirp slope keying to map short bit sequences on single or multiple bands without preamble or error correction coding on the physical layer. We introduce a symbol detection scheme in the demodulator that uses the superposed matched filter results of up and down chirp references to estimate the symbol timing, which removes the requirement of a preamble for symbol synchronization. Details of the implementation are disclosed and discussed, and the performance is verified in a pool measurement on laboratory scale, as well as the simulation for a channel containing Rayleigh fading and Additive White Gaussian Noise. For time-bandwidth products (TB) of 50 in single band mode, a raw data rate of 100 bit/s is simulated to achieve bit error rates (BER) below 0.001 for signal-to-noise ratios above -6 dB. In dual-band mode, for TB of 25 and a data rate of 200 bit/s, the same bit error level was achieved for signal-to-noise ratios above 0 dB. The simulated packet error rates (PER) follow the general behavior of the BER, but with a higher error probability, which increases with the length of bits in each packet.

9.
Sensors (Basel) ; 21(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34640652

RESUMO

Time difference of arrival (TDOA) based indoor ultrasound localization systems are prone to multiple disruptions and demand reliable, and resilient position accuracy during operation. In this challenging context, a missing link to evaluate the performance of such systems is a simulation approach to test their robustness in the presence of disruptions. This approach cannot only replace experiments in early phases of development but could also be used to study susceptibility, robustness, response, and recovery in case of disruptions. The paper presents a simulation framework for a TDOA-based indoor ultrasound localization system and ways to introduce different types of disruptions. This framework can be used to test the performance of TDOA-based localization algorithms in the presence of disruptions. Resilience quantification results are presented for representative disruptions. Based on these quantities, it is found that localization with arc-tangent cost function is approximately 30% more resilient than the linear cost function. The simulation approach is shown to apply to resilience engineering and can be used to increase the efficiency and quality of indoor localization methods.


Assuntos
Algoritmos , Simulação por Computador , Rotação
10.
Mol Ecol ; 29(9): 1611-1627, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31820838

RESUMO

Island biodiversity has long fascinated biologists as it typically presents tractable systems for unpicking the eco-evolutionary processes driving community assembly. In general, two recurring themes are of central theoretical interest. First, immigration, diversification, and extinction typically depend on island geographical properties (e.g., area, isolation, and age). Second, predictable ecological and evolutionary trajectories readily occur after colonization, such as the evolution of adaptive trait syndromes, trends toward specialization, adaptive radiation, and eventual ecological decline. Hypotheses such as the taxon cycle draw on several of these themes to posit particular constraints on colonization and subsequent eco-evolutionary dynamics. However, it has been challenging to examine these integrated dynamics with traditional methods. Here, we combine phylogenomics, population genomics and phenomics, to unravel community assembly dynamics among Pheidole (Hymenoptera, Formicidae) ants in the isolated Fijian archipelago. We uphold basic island biogeographic predictions that isolated islands accumulate diversity primarily through in situ evolution rather than dispersal, and population genomic support for taxon cycle predictions that endemic species have decreased dispersal ability and demography relative to regionally widespread taxa. However, rather than trending toward island syndromes, ecomorphological diversification in Fiji was intense, filling much of the genus-level global morphospace. Furthermore, while most endemic species exhibit demographic decline and reduced dispersal, we show that the archipelago is not an evolutionary dead-end. Rather, several endemic species show signatures of population and range expansion, including a successful colonization to the Cook islands. These results shed light on the processes shaping island biotas and refine our understanding of island biogeographic theory.


Assuntos
Formigas , Genômica , Ilhas , Fenômica , Animais , Formigas/genética , Biodiversidade , Evolução Biológica , Filogenia , Polinésia
11.
Front Zool ; 17: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088333

RESUMO

BACKGROUND: Explanations for the ecological dominance of ants generally focus on the benefits of division of labour and cooperation during foraging. However, the principal innovation of ants relative to their wasp ancestors was the evolution of a new phenotype: a wingless worker caste optimized for ground labour. Ant workers are famous for their ability to lift and carry heavy loads, but we know surprisingly little about the morphological basis of their strength. Here we examine the consequences of the universal loss of flight in ant workers on skeletomuscular adaptations in the thorax for enhanced foraging on six legs. RESULTS: Using X-ray microcomputed tomography and 3D segmentation, we compared winged queens and wingless workers in Euponera sikorae (subfamily Ponerinae) and Cataglyphis savignyi (subfamily Formicinae). Workers are characterized by five major changes to their thorax: i) fusion of the articulated flight thorax (queens) into a rigid box optimized to support the muscles that operate the head, legs and abdomen, ii) redesign of internal cuticular structures for better bracing and muscle attachment, iii) substantial enlargement of the neck muscles for suspending and moving the head, iv) lengthening of the external trochanter muscles, predominant for the leg actions that lift the body off the ground, v) modified angle of the petiole muscles that are key for flexion of the abdomen. We measured volumes and pennation angles for a few key muscles to assess their increased efficacy. Our comparisons of additional workers across five genera in subfamilies Dorylinae and Myrmicinae show these modifications in the wingless thorax to be consistent. In contrast, a mutillid wasp showed a different pattern of muscle adaptations resulting from the lack of wing muscles. CONCLUSIONS: Rather than simply a subtraction of costly flight muscles, we propose the ant worker thorax evolved into a power core underlying stronger mandibles, legs, and sting. This contrasts with solitary flightless insects where the lack of central place foraging generated distinct selective pressures for rearranging the thorax. Stronger emphasis is needed on morphological innovations of social insects to further our understanding of the evolution of social behaviours.

12.
Sensors (Basel) ; 20(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322141

RESUMO

Biopotential sensing technology with electrodes has a great future in medical treatment and human-machine interface, whereas comfort and longevity are two significant problems during usage. Noncontact electrode is a promising alternative to achieve more comfortable and long term biopotential signal recordings than contact electrode. However, it could pick up a significantly higher level of common-mode (CM) noise, which is hardly solved with passive filtering. The impedance imbalance at the electrode-body interface is a limiting factor of this problem, which reduces the common mode rejection ratio (CMRR) of the amplifier. In this work, we firstly present two novel CM noise reduction circuit designs. The circuit designs are based on electrode-body impedance imbalance cancellation. We perform circuit analysis and circuit simulations to explain the principles of the two circuits, both of which showed effectiveness in CM noise rejection. Secondly, we proposed a practical approach to detect and monitor the electrode-body impedance imbalance change. Compared with the conventional approach, it has certain advantages in interference immunity, and good linearity for capacitance. Lastly, we show experimental evaluation results on one of the designs we proposed. The results indicated the validity and feasibility of the approach.


Assuntos
Amplificadores Eletrônicos , Impedância Elétrica , Ruído , Capacitância Elétrica , Eletrodos , Desenho de Equipamento , Humanos , Monitorização Fisiológica
13.
Sensors (Basel) ; 20(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054136

RESUMO

This paper proposes a robust and real-time capable algorithm for classification of the firstand second heart sounds. The classification algorithm is based on the evaluation of the envelope curveof the phonocardiogram. For the evaluation, in contrast to other studies, measurements on twelveprobands were conducted in different physiological conditions. Moreover, for each measurement theauscultation point, posture and physical stress were varied. The proposed envelope-based algorithmis tested with two different methods for envelope curve extraction: the Hilbert transform andthe short-time Fourier transform. The performance of the classification of the first heart soundsis evaluated by using a reference electrocardiogram. Overall, by using the Hilbert transform,the algorithm has a better performance regarding the F1-score and computational effort. Theproposed algorithm achieves for the S1 classification an F1-score up to 95.7% and in average 90.5 %.The algorithm is robust against the age, BMI, posture, heart rate and auscultation point (exceptmeasurements on the back) of the subjects. The ECG and PCG records are available from the authors.


Assuntos
Algoritmos , Eletrocardiografia/métodos , Ruídos Cardíacos/fisiologia , Fonocardiografia/métodos , Adulto , Idoso , Análise de Fourier , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Adulto Jovem
14.
Pediatr Res ; 83(5): 1016-1023, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29538367

RESUMO

BackgroundPostnatally, the immature left ventricle (LV) is subjected to high systemic afterload. Hypothesizing that LV pumping would change during transition-adaptation, we analyzed the LV in preterm infants (GA≤32+6), clinically stable or with a hemodynamically significant patent ductus arteriosus (hPDA) by applying a pump model.MethodsPumping was characterized by EA (effective arterial elastance, reflecting afterload), EES (end-systolic LV elastance, reflecting contractility), EA/EES coupling ratios, descriptive EA:EES relations, and EA/EES graphs. Data calculated from echocardiography and blood pressure were analyzed by diagnosis (S group: clinically stable, no hPDA, n=122; hPDA group, n=53) and by periods (early transition: days of life 1-3; late transition: 4-7; and adaptation: 8-30).ResultsS group: LV pumping was characterized by an increased EA/EES coupling ratio of 0.65 secondary to low EES in early transition, a tandem rise of both EA and EES in late transition, and an EA/EES coupling ratio of 0.45 secondary to high EES in adaptation; hPDA group: time-trend analyses showed significantly lower EA (P<0.0001) and EES (P=0.006). Therefore, LV pumping was characterized by a lower EA/EES coupling ratio (P=0.088) throughout transition-adaptation.ConclusionsIn stable infants, facing high afterload, the immature LV, enhanced by the physiological PDA, increases its contractility. In hPDA, facing low afterload, the overloaded immature LV exhibits a consistently lower contractility.


Assuntos
Permeabilidade do Canal Arterial/fisiopatologia , Ventrículos do Coração/fisiopatologia , Adaptação Fisiológica , Artérias , Pressão Sanguínea , Ecocardiografia , Hemodinâmica , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Modelos Cardiovasculares , Estudos Prospectivos , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia
15.
Earth Planets Space ; 70(1): 88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31007533

RESUMO

The existence of lightning discharges in the Venus atmosphere has been controversial for more than 30 years, with many positive and negative reports published. The lightning and airglow camera (LAC) onboard the Venus orbiter, Akatsuki, was designed to observe the light curve of possible flashes at a sufficiently high sampling rate to discriminate lightning from other sources and can thereby perform a more definitive search for optical emissions. Akatsuki arrived at Venus during December 2016, 5 years following its launch. The initial operations of LAC through November 2016 have included a progressive increase in the high voltage applied to the avalanche photodiode detector. LAC began lightning survey observations in December 2016. It was confirmed that the operational high voltage was achieved and that the triggering system functions correctly. LAC lightning search observations are planned to continue for several years.

16.
J Am Chem Soc ; 139(30): 10461-10471, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28678489

RESUMO

The radical cations of a family of π-conjugated porphyrin arrays have been investigated: linear chains of N = 1-6 porphyrins, a 6-porphyrin nanoring and a 12-porphyrin nanotube. The radical cations were generated in solution by chemical and electrochemical oxidation, and probed by vis-NIR-IR and EPR spectroscopies. The cations exhibit strong NIR bands at ∼1000 nm and 2000-5000 nm, which shift to longer wavelength with increasing oligomer length. Analysis of the NIR and IR spectra indicates that the polaron is delocalized over 2-3 porphyrin units in the linear oligomers. Some of the IR vibrational bands are strongly intensified on oxidation, and Fano-type antiresonances are observed when activated vibrations overlap with electronic transitions. The solution-phase EPR spectra of the radical cations have Gaussian lineshapes with linewidths proportional to N-0.5, demonstrating that at room temperature the spin hops rapidly over the whole chain on the time scale of the hyperfine coupling (ca. 100 ns). Direct measurement of the hyperfine couplings through electron-nuclear double resonance (ENDOR) in frozen solution (80 K) indicates distribution of the spin over 2-3 porphyrin units for all the oligomers, except the 12-porphyrin nanotube, in which the spin is spread over about 4-6 porphyrins. These experimental studies of linear and cyclic cations give a consistent picture, which is supported by DFT calculations and multiparabolic modeling with a reorganization energy of 1400-2000 cm-1 and coupling of 2000 cm-1 for charge transfer between neighboring sites, placing the system in the Robin-Day class III.

17.
Sci Rep ; 13(1): 558, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631567

RESUMO

Studies using machine learning (ML) approaches have reported high diagnostic accuracies for glaucoma detection. However, none assessed model performance across ethnicities. The aim of the study is to externally validate ML models for glaucoma detection from optical coherence tomography (OCT) data. We performed a prospective, cross-sectional study, where 514 Asians (257 glaucoma/257 controls) were enrolled to construct ML models for glaucoma detection, which was then tested on 356 Asians (183 glaucoma/173 controls) and 138 Caucasians (57 glaucoma/81 controls). We used the retinal nerve fibre layer (RNFL) thickness values produced by the compensation model, which is a multiple regression model fitted on healthy subjects that corrects the RNFL profile for anatomical factors and the original OCT data (measured) to build two classifiers, respectively. Both the ML models (area under the receiver operating [AUC] = 0.96 and accuracy = 92%) outperformed the measured data (AUC = 0.93; P < 0.001) for glaucoma detection in the Asian dataset. However, in the Caucasian dataset, the ML model trained with compensated data (AUC = 0.93 and accuracy = 84%) outperformed the ML model trained with original data (AUC = 0.83 and accuracy = 79%; P < 0.001) and measured data (AUC = 0.82; P < 0.001) for glaucoma detection. The performance with the ML model trained on measured data showed poor reproducibility across different datasets, whereas the performance of the compensated data was maintained. Care must be taken when ML models are applied to patient cohorts of different ethnicities.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Estudos Transversais , Reprodutibilidade dos Testes , Estudos Prospectivos , Pressão Intraocular , Curva ROC , Sensibilidade e Especificidade , Glaucoma/diagnóstico , Aprendizado de Máquina , Tomografia de Coerência Óptica/métodos
18.
Space Sci Rev ; 219(7): 53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744214

RESUMO

ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 µm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.

19.
Phys Chem Chem Phys ; 14(8): 2921-8, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22262058

RESUMO

A series of novel pyrrolopyrrole cyanines (PPCys) bearing various aminophenyl substituents at the diketopyrrolopyrrole (DPP) core are presented. Compared to their alkoxyphenyl substituted analogues, these dyes feature additional intense electronic transitions of charge-transfer character which give detailed insight into the optical properties of PPCys. The energetic mixing of the involved orbitals has pronounced effects on the absorption and fluorescence behavior. Protonation of the amino function suppresses these effects and leads to a pronounced increase in fluorescence quantum yield. The photophysics of the dyes can be rationalized by means of a simple energy scheme.


Assuntos
Luz , Pirróis/química , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
20.
Diagnostics (Basel) ; 12(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35741143

RESUMO

The traveled distance and orientation of capsule endoscopes for each video frame are not available in commercial systems, but they would be highly relevant for physicians. Furthermore, scientific approaches lack precisely tracking the capsules along curved trajectories within the typical gastrointestinal tract. Recently, we showed that the differential static magnetic localisation method is suitable for the precise absolute localisation of permanent magnets assumed to be integrated into capsule endoscopes. Thus, in the present study, the differential method was employed to track permanent magnets in terms of traveled distance and orientation along a length trajectory of 487.5 mm, representing a model of the winding gastrointestinal tract. Permanent magnets with a diameter of 10 mm and different lengths were used to find a lower boundary for magnet size. Results reveal that the mean relative distance and orientation errors did not exceed 4.3 ± 3.3%, and 2 ± 0.6∘, respectively, when the magnet length was at least 5 mm. Thus, a 5 mm long magnet would be a good compromise between achievable tracking accuracy and magnet volume, which are essential for integration into small commercial capsules. Overall, the proposed tracking accuracy was better than that of the state of the art within a region covering the typical gastrointestinal-tract size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA