Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 127(Pt 9): 2017-28, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24554431

RESUMO

The Snail family of zinc-finger transcription factors are evolutionarily conserved proteins that control processes requiring cell movement. Specifically, they regulate epithelial-to-mesenchymal transitions (EMT) where an epithelial cell severs intercellular junctions, degrades basement membrane and becomes a migratory, mesenchymal-like cell. Interestingly, Slug expression has been observed in angiogenic endothelial cells (EC) in vivo, suggesting that angiogenic sprouting may share common attributes with EMT. Here, we demonstrate that sprouting EC in vitro express both Slug and Snail, and that siRNA-mediated knockdown of either inhibits sprouting and migration in multiple in vitro angiogenesis assays. We find that expression of MT1-MMP, but not of VE-Cadherin, is regulated by Slug and that loss of sprouting as a consequence of reduced Slug expression can be reversed by lentiviral-mediated re-expression of MT1-MMP. Activity of MMP2 and MMP9 are also affected by Slug expression, likely through MT1-MMP. Importantly, we find enhanced expression of Slug in EC in human colorectal cancer samples compared with normal colon tissue, suggesting a role for Slug in pathological angiogenesis. In summary, these data implicate Slug as an important regulator of sprouting angiogenesis, particularly in pathological settings.


Assuntos
Fatores de Transcrição/metabolismo , Células Cultivadas , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imuno-Histoquímica , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metilcelulose/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição da Família Snail
2.
Arterioscler Thromb Vasc Biol ; 34(5): 1011-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24603679

RESUMO

OBJECTIVE: It is well established that angiogenesis is a complex and coordinated multistep process. However, there remains a lack of information about the genes that regulate individual stages of vessel formation. Here, we aimed to define the role of human interferon-induced transmembrane protein 1 (IFITM1) during blood vessel formation. APPROACH AND RESULTS: We identified IFITM1 in a microarray screen for genes differentially regulated by endothelial cells (ECs) during an in vitro angiogenesis assay and found that IFITM1 expression was strongly induced as ECs sprouted and formed lumens. We showed by immunohistochemistry that human IFITM1 was expressed by stable blood vessels in multiple organs. siRNA-mediated knockdown of IFITM1 expression spared EC sprouting but completely disrupted lumen formation, in both in vitro and in an in vivo xeno-transplant model. ECs lacking IFITM1 underwent early stages of lumenogenesis (ie, intracellular vacuole formation) but failed to mature or expand lumens. Coimmunoprecipitation studies confirmed occludin as an IFITM1 binding partner in ECs, and immunocytochemistry showed a lack of occludin at endothelial tight junctions in the absence of IFITM1. Finally, time-lapse video microscopy revealed that IFITM1 is required for the formation of stable cell-cell contacts during endothelial lumen formation. CONCLUSIONS: IFITM1 is essential for the formation of functional blood vessels and stabilizes EC-EC interactions during endothelial lumen formation by regulating tight junction assembly.


Assuntos
Antígenos de Diferenciação/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Animais , Antígenos de Diferenciação/genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Microscopia de Vídeo , Ocludina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Junções Íntimas/metabolismo , Fatores de Tempo , Imagem com Lapso de Tempo , Transfecção
3.
Arterioscler Thromb Vasc Biol ; 33(3): 513-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23288153

RESUMO

OBJECTIVE: Angiogenesis requires tightly coordinated crosstalk between endothelial cells (ECs) and stromal cells, such as fibroblasts and smooth muscle cells. The specific molecular mechanisms moderating this process are still poorly understood. METHODS AND RESULTS: Stromal cell-derived factors are essential for EC sprouting and lumen formation. We therefore compared the abilities of 2 primary fibroblast isolates and a primary smooth muscle cell isolate to promote in vitro angiogenesis, and analyzed their secretomes using a combination of nano liquid chromatography-mass spectrometry/mass spectrometry, quantitative PCR, and ELISA. Each isolate exhibited a different level of angiogenic ability. Using quantitative MS, we then compared the secretomes of a fibroblast isolate exhibiting low angiogenic activity, a fibroblast isolate exhibiting high angiogenic activity, and human umbilical vein ECs. High angiogenic fibroblast supernatants exhibited an overabundance of proteins associated with extracellular matrix constituents compared with low angiogenic fibroblasts or ECs. Finally, small interfering RNA technology and purified protein were used to confirm a role for stromal cell-derived hepatocyte growth factor and fibronectin in inducing EC sprouting. CONCLUSIONS: Differences in stromal cell ability to induce angiogenesis are a result of differences in the secreted proteomes of both extracellular matrix proteins and proangiogenic growth factors.


Assuntos
Fibronectinas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina , Células Estromais/metabolismo , Células Cultivadas , Cromatografia Líquida , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Fibronectinas/genética , Fator de Crescimento de Hepatócito/genética , Humanos , Miócitos de Músculo Liso/metabolismo , Nanotecnologia , Proteômica/métodos , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Fatores de Tempo , Transfecção
4.
Tissue Eng Part A ; 22(15-16): 1016-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27392582

RESUMO

Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease.


Assuntos
Antígenos de Diferenciação/biossíntese , Matriz Extracelular/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/química , Miócitos Cardíacos/metabolismo , Alicerces Teciduais/química , Animais , Bovinos , Técnicas de Cocultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA