Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 17(7)2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27409610

RESUMO

The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1.


Assuntos
Aquaporina 1/metabolismo , Células da Medula Óssea/citologia , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Aquaporina 1/antagonistas & inibidores , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Tetraetilamônio/farmacologia , Microambiente Tumoral/efeitos dos fármacos
2.
Theranostics ; 7(14): 3595-3607, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912898

RESUMO

Bone marrow-derived mesenchymal stem cells (BM-MSCs) are shown to participate in tumor progression by establishing a favorable tumor microenvironment (TME) that promote metastasis through a cytokine networks. However, the mechanism of homing and recruitment of BM-MSCs into tumors and their potential role in malignant tissue progression is poorly understood and controversial. Here we show that BM-MSCs increase aggressiveness of triple-negative breast cancer (TNBC) cell lines evaluated as capability to migrate, invade and acquire stemness markers. Importantly, we demonstrate that the treatment of BM-MSCs with a nuclease-resistant RNA aptamer against platelet-derived growth factor receptor ß (PDGFRß) causes the inhibition of receptor-dependent signaling pathways thus drastically hampering BM-MSC recruitment towards TNBC cell lines and BM-MSCs trans-differentiation into carcinoma-associated fibroblast (CAF)-like cells. Moreover, in vivo molecular imaging analysis demonstrated the aptamer ability to prevent BM-MSCs homing to TNBC xenografts. Collectively, our results indicate the anti-PDGFRß aptamer as a novel therapeutic tool to interfere with BM-MSCs attraction to TNBC providing the rationale to further explore the aptamer in more complex pre-clinical settings.


Assuntos
Aptâmeros de Nucleotídeos/genética , Movimento Celular , Células-Tronco Mesenquimais/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral , Animais , Transdiferenciação Celular , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células MCF-7 , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapêutica com RNAi/métodos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
3.
Mol Ther Nucleic Acids ; 5: e289, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27111415

RESUMO

TNF-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent for its remarkable ability to selectively induce apoptosis in cancer cells, without affecting the viability of healthy bystander cells. The TRAIL tumor suppressor pathway is deregulated in many human malignancies including lung cancer. In human non-small cell lung cancer (NSCLC) cells, sensitization to TRAIL therapy can be restored by increasing the expression levels of the tumor suppressor microRNA-212 (miR-212) leading to inhibition of the anti-apoptotic protein PED/PEA-15 implicated in treatment resistance. In this study, we exploited a previously described RNA aptamer inhibitor of the tyrosine kinase receptor Axl (GL21.T) expressed on lung cancer cells, as a means to deliver miR-212 into human NSCLC cells expressing Axl. We demonstrate efficient delivery of miR-212 following conjugation of the miR to GL21.T (GL21.T-miR212 chimera). We show that the chimera downregulates PED and restores TRAIL-mediate cytotoxicity in cancer cells. Importantly, treatment of Axl+ lung cancer cells with the chimera resulted in (i) an increase in caspase activation and (ii) a reduction of cell viability in combination with TRAIL therapy. In conclusion, we demonstrate that the GL21.T-miR212 chimera can be employed as an adjuvant to TRAIL therapy for the treatment of lung cancer.

4.
Cancer Lett ; 370(1): 100-7, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26517945

RESUMO

Recent findings suggest that bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into the microenvironment of developing tumors, where they contribute to metastatic processes. The aim of this study was to investigate the role of BM-MSCs in promoting osteosarcoma and hepatocellular carcinoma cell progression in vitro and the possible mechanisms involved in these processes. U2OS and SNU-398 are osteosarcoma and hepatocellular carcinoma cell lines, respectively, that can be induced to proliferate when cultured in the presence of BM-MSCs. To determine the effect of BM-MSCs on U2OS and SNU-398 cells, the AKT and ERK signaling pathways were investigated, and increases were observed in active P-Akt and P-Erk forms. Moreover, BM-MSCs caused an increase in tumor cell migration and invasion that was derived from the enhancement of CXCR4 levels. Thus, when tumor cells were treated with the CXCR4 antagonist AMD3100, a reduction in their migration and invasion was observed. Furthermore, a new CXCR4 inhibitor, Peptide R, which was recently developed as an anticancer agent, was used to inhibit BM-MSC-mediated tumor invasion and to overcome AMD3100 toxicity. Taken together, these results suggest that inhibiting CXCR4 impairs the cross-talk between tumor cells and BM-MSCs, resulting in reduced metastatic potential in osteosarcoma and hepatocellular carcinoma cells.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Movimento Celular , Neoplasias Hepáticas/tratamento farmacológico , Células-Tronco Mesenquimais/fisiologia , Osteossarcoma/tratamento farmacológico , Receptores CXCR4/antagonistas & inibidores , Neoplasias Ósseas/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cicatrização
5.
Mol Ther Nucleic Acids ; 5(9): e365, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27648925

RESUMO

Nucleic acid-based aptamers are emerging as therapeutic antagonists of disease-associated proteins such as receptor tyrosine kinases. They are selected by an in vitro combinatorial chemistry approach, named Systematic Evolution of Ligands by Exponential enrichment (SELEX), and thanks to their small size and unique chemical characteristics, they possess several advantages over antibodies as diagnostics and therapeutics. In addition, aptamers that rapidly internalize into target cells hold as well great potential for their in vivo use as delivery tools of secondary therapeutic agents. Here, we describe a nuclease resistant RNA aptamer, named GL56, which specifically recognizes the insulin receptor (IR). Isolated by a cell-based SELEX method that allows enrichment for internalizing aptamers, GL56 rapidly internalizes into target cells and is able to discriminate IR from the highly homologous insulin-like growth factor receptor 1. Notably, when applied to IR expressing cancer cells, the aptamer inhibits IR dependent signaling. Given the growing interest in the insulin receptor as target for cancer treatment, GL56 reveals a novel molecule with great translational potential as inhibitor and delivery tool for IR-dependent cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA