Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 242(6): 2464-2478, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641796

RESUMO

Xylem conduits have lignified walls to resist crushing pressures. The thicker the double-wall (T) relative to its diameter (D), the greater the implosion safety. Having safer conduits may incur higher costs and reduced flow, while having less resistant xylem may lead to catastrophic collapse under drought. Although recent studies have shown that conduit implosion commonly occurs in leaves, little is known about how leaf xylem scales T vs D to trade off safety, flow efficiency, mechanical support, and cost. We measured T and D in > 7000 conduits of 122 species to investigate how T vs D scaling varies across clades, habitats, growth forms, leaf, and vein sizes. As conduits become wider, their double-cell walls become proportionally thinner, resulting in a negative allometry between T and D. That is, narrower conduits, which are usually subjected to more negative pressures, are proportionally safer than wider ones. Higher implosion safety (i.e. higher T/D ratios) was found in asterids, arid habitats, shrubs, small leaves, and minor veins. Despite the strong allometry, implosion safety does not clearly trade off with other measured leaf functions, suggesting that implosion safety at whole-leaf level cannot be easily predicted solely by individual conduits' anatomy.


Assuntos
Folhas de Planta , Xilema , Xilema/fisiologia , Xilema/anatomia & histologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Parede Celular , Ecossistema
2.
New Phytol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180209

RESUMO

Variation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs. Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function. We found that generalized architecture-function trade-offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale. This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.

3.
Microb Ecol ; 80(1): 191-201, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31873773

RESUMO

Anaerobic soil disinfestation (ASD) is an organic amendment-based management tool for controlling soil-borne plant diseases and is increasingly used in a variety of crops. ASD results in a marked decrease in soil redox potential and other physicochemical changes, and a turnover in the composition of the soil microbiome. Mechanisms of ASD-mediated pathogen control are not fully understood, but appear to depend on the carbon source used to initiate the process and involve a combination of biological (i.e., release of volatile organic compounds) and abiotic (i.e., lowered pH, release of metal ions) factors. In this study, we examined how the soil microbiome changes over time in response to ASD initiated with rice bran, tomato pomace, or red grape pomace as amendments using growth chamber mesocosms that replicate ASD-induced field soil redox conditions. Within 2 days, the soil microbiome rapidly shifted from a diverse assemblage of taxa to being dominated by members of the Firmicutes for all ASD treatments, whereas control mesocosms maintained diverse and more evenly distributed communities. Rice bran and tomato pomace amendments resulted in microbial communities with similar compositions and trajectories that were different from red grape pomace communities. Quantitative PCR showed nitrogenase gene abundances were higher in ASD communities and tended to increase over time, suggesting the potential for altering soil nitrogen availability. These results highlight the need for temporal and functional studies to understand how pathogen suppressive microbial communities assemble and function in ASD-treated soils.


Assuntos
Desinfecção , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Solo/química , Anaerobiose , Carbono/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA