Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 58(9): 5060-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913172

RESUMO

Renewed global efforts toward malaria eradication have highlighted the need for novel antimalarial agents with activity against multiple stages of the parasite life cycle. We have previously reported the discovery of a novel class of antimalarial compounds in the imidazolopiperazine series that have activity in the prevention and treatment of blood stage infection in a mouse model of malaria. Consistent with the previously reported activity profile of this series, the clinical candidate KAF156 shows blood schizonticidal activity with 50% inhibitory concentrations of 6 to 17.4 nM against P. falciparum drug-sensitive and drug-resistant strains, as well as potent therapeutic activity in a mouse models of malaria with 50, 90, and 99% effective doses of 0.6, 0.9, and 1.4 mg/kg, respectively. When administered prophylactically in a sporozoite challenge mouse model, KAF156 is completely protective as a single oral dose of 10 mg/kg. Finally, KAF156 displays potent Plasmodium transmission blocking activities both in vitro and in vivo. Collectively, our data suggest that KAF156, currently under evaluation in clinical trials, has the potential to treat, prevent, and block the transmission of malaria.


Assuntos
Antimaláricos/farmacologia , Imidazóis/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/transmissão , Piperazinas/farmacologia , Animais , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos ICR , Plasmodium falciparum/efeitos dos fármacos , Esporozoítos/efeitos dos fármacos
2.
Mol Biochem Parasitol ; 175(1): 21-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20813141

RESUMO

The efficacy of most marketed antimalarial drugs has been compromised by evolution of parasite resistance, underscoring an urgent need to find new drugs with new mechanisms of action. We have taken a high-throughput approach toward identifying novel antimalarial chemical inhibitors of prioritized drug targets for Plasmodium falciparum, excluding targets which are inhibited by currently used drugs. A screen of commercially available libraries identified 5655 low molecular weight compounds that inhibit growth of P. falciparum cultures with EC(50) values below 1.25µM. These compounds were then tested in 384- or 1536-well biochemical assays for activity against nine Plasmodium enzymes: adenylosuccinate synthetase (AdSS), choline kinase (CK), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), glutamate dehydrogenase (GDH), guanylate kinase (GK), N-myristoyltransferase (NMT), orotidine 5'-monophosphate decarboxylase (OMPDC), farnesyl pyrophosphate synthase (FPPS) and S-adenosylhomocysteine hydrolase (SAHH). These enzymes were selected using TDRtargets.org, and are believed to have excellent potential as drug targets based on criteria such as their likely essentiality, druggability, and amenability to high-throughput biochemical screening. Six of these targets were inhibited by one or more of the antimalarial scaffolds and may have potential use in drug development, further target validation studies and exploration of P. falciparum biochemistry and biology.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Enzimas/metabolismo , Concentração Inibidora 50 , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA