Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 120(6): 3155-3171, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207864

RESUMO

High-density microelectrode arrays can be used to record extracellular action potentials from hundreds to thousands of neurons simultaneously. Efficient spike sorters must be developed to cope with such large data volumes. Most existing spike sorting methods for single electrodes or small multielectrodes, however, suffer from the "curse of dimensionality" and cannot be directly applied to recordings with hundreds of electrodes. This holds particularly true for the standard reference spike sorting algorithm, principal component analysis-based feature extraction, followed by k-means or expectation maximization clustering, against which most spike sorters are evaluated. We present a spike sorting algorithm that circumvents the dimensionality problem by sorting local groups of electrodes independently with classical spike sorting approaches. It is scalable to any number of recording electrodes and well suited for parallel computing. The combination of data prewhitening before the principal component analysis-based extraction and a parameter-free clustering algorithm obviated the need for parameter adjustments. We evaluated its performance using surrogate data in which we systematically varied spike amplitudes and spike rates and that were generated by inserting template spikes into the voltage traces of real recordings. In a direct comparison, our algorithm could compete with existing state-of-the-art spike sorters in terms of sensitivity and precision, while parameter adjustment or manual cluster curation was not required. NEW & NOTEWORTHY We present an automatic spike sorting algorithm that combines three strategies to scale classical spike sorting techniques for high-density microelectrode arrays: 1) splitting the recording electrodes into small groups and sorting them independently; 2) clustering a subset of spikes and classifying the rest to limit computation time; and 3) prewhitening the spike waveforms to enable the use of parameter-free clustering. Finally, we combined these strategies into an automatic spike sorter that is competitive with state-of-the-art spike sorters.


Assuntos
Algoritmos , Análise em Microsséries/métodos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Potenciais de Ação , Animais , Cricetinae , Mesocricetus , Análise em Microsséries/instrumentação , Microeletrodos , Técnicas de Patch-Clamp/instrumentação
2.
J Neurophysiol ; 114(4): 2535-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26289473

RESUMO

Synchronous spike discharge of cortical neurons is thought to be a fingerprint of neuronal cooperativity. Because neighboring neurons are more densely connected to one another than neurons that are located further apart, near-synchronous spike discharge can be expected to be prevalent and it might provide an important basis for cortical computations. Using microelectrodes to record local groups of neurons does not allow for the reliable separation of synchronous spikes from different cells, because available spike sorting algorithms cannot correctly resolve the temporally overlapping waveforms. We show that high spike sorting performance of in vivo recordings, including overlapping spikes, can be achieved with a recently developed filter-based template matching procedure. Using tetrodes with a three-dimensional structure, we demonstrate with simulated data and ground truth in vitro data, obtained by dual intracellular recording of two neurons located next to a tetrode, that the spike sorting of synchronous spikes can be as successful as the spike sorting of nonoverlapping spikes and that the spatial information provided by multielectrodes greatly reduces the error rates. We apply the method to tetrode recordings from the prefrontal cortex of behaving primates, and we show that overlapping spikes can be identified and assigned to individual neurons to study synchronous activity in local groups of neurons.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador , Animais , Simulação por Computador , Estimulação Elétrica , Hipocampo/fisiologia , Macaca , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Testes Neuropsicológicos , Técnicas de Patch-Clamp , Córtex Pré-Frontal/fisiologia , Ratos Wistar , Técnicas de Cultura de Tecidos , Percepção Visual/fisiologia
3.
J Neurophysiol ; 114(4): 2485-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26289471

RESUMO

The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions.


Assuntos
Células Ganglionares da Retina/fisiologia , Visão Ocular/fisiologia , Potenciais de Ação , Animais , Simulação por Computador , Feminino , Modelos Lineares , Microeletrodos , Modelos Neurológicos , Estimulação Luminosa , Probabilidade , Coelhos , Processamento de Sinais Assistido por Computador , Técnicas de Cultura de Tecidos
4.
J Comput Neurosci ; 38(3): 439-59, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25652689

RESUMO

Spike sorting, i.e., the separation of the firing activity of different neurons from extracellular measurements, is a crucial but often error-prone step in the analysis of neuronal responses. Usually, three different problems have to be solved: the detection of spikes in the extracellular recordings, the estimation of the number of neurons and their prototypical (template) spike waveforms, and the assignment of individual spikes to those putative neurons. If the template spike waveforms are known, template matching can be used to solve the detection and classification problem. Here, we show that for the colored Gaussian noise case the optimal template matching is given by a form of linear filtering, which can be derived via linear discriminant analysis. This provides a Bayesian interpretation for the well-known matched filter output. Moreover, with this approach it is possible to compute a spike detection threshold analytically. The method can be implemented by a linear filter bank derived from the templates, and can be used for online spike sorting of multielectrode recordings. It may also be applicable to detection and classification problems of transient signals in general. Its application significantly decreases the error rate on two publicly available spike-sorting benchmark data sets in comparison to state-of-the-art template matching procedures. Finally, we explore the possibility to resolve overlapping spikes using the template matching outputs and show that they can be resolved with high accuracy.


Assuntos
Redes Neurais de Computação , Neurônios/fisiologia , Potenciais de Ação , Algoritmos , Teorema de Bayes , Benchmarking , Análise Discriminante , Modelos Neurológicos , Distribuição Normal , Reprodutibilidade dos Testes
5.
Anal Bioanal Chem ; 406(27): 7015-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25012351

RESUMO

We present a microfluidic device, which enables single cells to be reliably trapped and cultivated while simultaneously being monitored by means of multifrequency electrical impedance spectroscopy (EIS) in the frequency range of 10 kHz-10 MHz. Polystyrene beads were employed to characterize the EIS performance inside the microfluidic device. The results demonstrate that EIS yields a low coefficient of variation in measuring the diameters of captured beads (~0.13%). Budding yeast, Saccharomyces cerevisiae, was afterwards used as model organism. Single yeast cells were immobilized and measured by means of EIS. The bud growth was monitored through EIS at a temporal resolution of 1 min. The size increment of the bud, which is difficult to determine optically within a short time period, can be clearly detected through EIS signals. The impedance measurements also reflect the changes in position or motion of single yeast cells in the trap. By analyzing the multifrequency EIS data, cell motion could be qualitatively discerned from bud growth. The results demonstrate that single-cell EIS can be used to monitor cell growth, while also detecting potential cell motion in real-time and label-free approach, and that EIS constitutes a sensitive tool for dynamic single-cell analysis.


Assuntos
Saccharomyces cerevisiae/citologia , Análise Espectral/métodos
6.
J Neurophysiol ; 108(1): 334-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22490552

RESUMO

Emerging complementary metal oxide semiconductor (CMOS)-based, high-density microelectrode array (HD-MEA) devices provide high spatial resolution at subcellular level and a large number of readout channels. These devices allow for simultaneous recording of extracellular activity of a large number of neurons with every neuron being detected by multiple electrodes. To analyze the recorded signals, spiking events have to be assigned to individual neurons, a process referred to as "spike sorting." For a set of observed signals, which constitute a linear mixture of a set of source signals, independent component (IC) analysis (ICA) can be used to demix blindly the data and extract the individual source signals. This technique offers great potential to alleviate the problem of spike sorting in HD-MEA recordings, as it represents an unsupervised method to separate the neuronal sources. The separated sources or ICs then constitute estimates of single-neuron signals, and threshold detection on the ICs yields the sorted spike times. However, it is unknown to what extent extracellular neuronal recordings meet the requirements of ICA. In this paper, we evaluate the applicability of ICA to spike sorting of HD-MEA recordings. The analysis of extracellular neuronal signals, recorded at high spatiotemporal resolution, reveals that the recorded data cannot be modeled as a purely linear mixture. As a consequence, ICA fails to separate completely the neuronal signals and cannot be used as a stand-alone method for spike sorting in HD-MEA recordings. We assessed the demixing performance of ICA using simulated data sets and found that the performance strongly depends on neuronal density and spike amplitude. Furthermore, we show how postprocessing techniques can be used to overcome the most severe limitations of ICA. In combination with these postprocessing techniques, ICA represents a viable method to facilitate rapid spike sorting of multidimensional neuronal recordings.


Assuntos
Potenciais de Ação/fisiologia , Análise em Microsséries , Microeletrodos , Células Ganglionares da Retina/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Simulação por Computador , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Técnicas In Vitro , Modelos Lineares , Camundongos , Camundongos Mutantes , Modelos Neurológicos , Dinâmica não Linear , Análise de Componente Principal
7.
Commun Biol ; 5(1): 692, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821404

RESUMO

Visual perception remains stable across saccadic eye movements, despite the concurrent strongly disruptive visual flow. This stability is partially associated with a reduction in visual sensitivity, known as saccadic suppression, which already starts in the retina with reduced ganglion cell sensitivity. However, the retinal circuit mechanisms giving rise to such suppression remain unknown. Here, we describe these mechanisms using electrophysiology in mouse, pig, and macaque retina, 2-photon calcium imaging, computational modeling, and human psychophysics. We find that sequential stimuli, like those that naturally occur during saccades, trigger three independent suppressive mechanisms in the retina. The main mechanism is triggered by contrast-reversing sequential stimuli and originates within the receptive field center of ganglion cells. It does not involve inhibition or other known suppressive mechanisms like saturation or adaptation. Instead, it relies on temporal filtering of the inherently slow response of cone photoreceptors coupled with downstream nonlinearities. Two further mechanisms of suppression are present predominantly in ON ganglion cells and originate in the receptive field surround, highlighting another disparity between ON and OFF ganglion cells. The mechanisms uncovered here likely play a role in shaping the retinal output following eye movements and other natural viewing conditions where sequential stimulation is ubiquitous.


Assuntos
Retina , Movimentos Sacádicos , Animais , Humanos , Camundongos , Estimulação Luminosa/métodos , Retina/fisiologia , Suínos , Visão Ocular , Percepção Visual/fisiologia
9.
J Comput Neurosci ; 29(1-2): 127-148, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19499318

RESUMO

For the analysis of neuronal cooperativity, simultaneously recorded extracellular signals from neighboring neurons need to be sorted reliably by a spike sorting method. Many algorithms have been developed to this end, however, to date, none of them manages to fulfill a set of demanding requirements. In particular, it is desirable to have an algorithm that operates online, detects and classifies overlapping spikes in real time, and that adapts to non-stationary data. Here, we present a combined spike detection and classification algorithm, which explicitly addresses these issues. Our approach makes use of linear filters to find a new representation of the data and to optimally enhance the signal-to-noise ratio. We introduce a method called "Deconfusion" which de-correlates the filter outputs and provides source separation. Finally, a set of well-defined thresholds is applied and leads to simultaneous spike detection and spike classification. By incorporating a direct feedback, the algorithm adapts to non-stationary data and is, therefore, well suited for acute recordings. We evaluate our method on simulated and experimental data, including simultaneous intra/extra-cellular recordings made in slices of a rat cortex and recordings from the prefrontal cortex of awake behaving macaques. We compare the results to existing spike detection as well as spike sorting methods. We conclude that our algorithm meets all of the mentioned requirements and outperforms other methods under realistic signal-to-noise ratios and in the presence of overlapping spikes.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Modelos Neurológicos , Neurônios/fisiologia , Sistemas On-Line , Adaptação Biológica , Animais , Animais Recém-Nascidos , Bases de Dados Factuais/estatística & dados numéricos , Ruído , Curva ROC , Ratos , Ratos Long-Evans , Processamento de Sinais Assistido por Computador
10.
Nat Commun ; 11(1): 1977, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332756

RESUMO

Visual sensitivity, probed through perceptual detectability of very brief visual stimuli, is strongly impaired around the time of rapid eye movements. This robust perceptual phenomenon, called saccadic suppression, is frequently attributed to active suppressive signals that are directly derived from eye movement commands. Here we show instead that visual-only mechanisms, activated by saccade-induced image shifts, can account for all perceptual properties of saccadic suppression that we have investigated. Such mechanisms start at, but are not necessarily exclusive to, the very first stage of visual processing in the brain, the retina. Critically, neural suppression originating in the retina outlasts perceptual suppression around the time of saccades, suggesting that extra-retinal movement-related signals, rather than causing suppression, may instead act to shorten it. Our results demonstrate a far-reaching contribution of visual processing mechanisms to perceptual saccadic suppression, starting in the retina, without the need to invoke explicit motor-based suppression commands.


Assuntos
Retina/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual , Adulto , Animais , Feminino , Fixação Ocular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Estimulação Luminosa , Tempo de Reação , Suínos , Visão Ocular , Campos Visuais , Adulto Jovem
11.
Sci Adv ; 6(12): eaay2789, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32219158

RESUMO

Multi-channel electrical recordings of neural activity in the brain is an increasingly powerful method revealing new aspects of neural communication, computation, and prosthetics. However, while planar silicon-based CMOS devices in conventional electronics scale rapidly, neural interface devices have not kept pace. Here, we present a new strategy to interface silicon-based chips with three-dimensional microwire arrays, providing the link between rapidly-developing electronics and high density neural interfaces. The system consists of a bundle of microwires mated to large-scale microelectrode arrays, such as camera chips. This system has excellent recording performance, demonstrated via single unit and local-field potential recordings in isolated retina and in the motor cortex or striatum of awake moving mice. The modular design enables a variety of microwire types and sizes to be integrated with different types of pixel arrays, connecting the rapid progress of commercial multiplexing, digitisation and data acquisition hardware together with a three-dimensional neural interface.


Assuntos
Eletrônica , Procedimentos Analíticos em Microchip , Neurônios/fisiologia , Animais , Eletrônica/instrumentação , Eletrônica/métodos , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Camundongos , Procedimentos Analíticos em Microchip/métodos , Microeletrodos
12.
Front Cell Neurosci ; 13: 159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118887

RESUMO

Axons convey information in neuronal circuits via reliable conduction of action potentials (APs) from the axon initial segment (AIS) to the presynaptic terminals. Recent experimental findings increasingly evidence that the axonal function is not limited to the simple transmission of APs. Advances in subcellular-resolution recording techniques have shown that axons display activity-dependent modulation in spike shape and conduction velocity, which influence synaptic strength and latency. We briefly review here, how recent methodological developments facilitate the understanding of the axon physiology. We included the three most common methods, i.e., genetically encoded voltage imaging (GEVI), subcellular patch-clamp and high-density microelectrode arrays (HD-MEAs). We then describe the potential of using HD-MEAs in studying axonal physiology in more detail. Due to their robustness, amenability to high-throughput and high spatiotemporal resolution, HD-MEAs can provide a direct functional electrical readout of single cells and cellular ensembles at subcellular resolution. HD-MEAs can, therefore, be employed in investigating axonal pathologies, the effects of large-scale genomic interventions (e.g., with RNAi or CRISPR) or in compound screenings. A combination of extracellular microelectrode arrays (MEAs), intracellular microelectrodes and optical imaging may potentially reveal yet unexplored repertoires of axonal functions.

13.
Front Neurosci ; 13: 385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105515

RESUMO

Advances in microfabrication technology have enabled the production of devices containing arrays of thousands of closely spaced recording electrodes, which afford subcellular resolution of electrical signals in neurons and neuronal networks. Rationalizing the electrode size and configuration in such arrays demands consideration of application-specific requirements and inherent features of the electrodes. Tradeoffs among size, spatial density, sensitivity, noise, attenuation, and other factors are inevitable. Although recording extracellular signals from neurons with planar metal electrodes is fairly well established, the effects of the electrode characteristics on the quality and utility of recorded signals, especially for small, densely packed electrodes, have yet to be fully characterized. Here, we present a combined experimental and computational approach to elucidating how electrode size, and size-dependent parameters, such as impedance, baseline noise, and transmission characteristics, influence recorded neuronal signals. Using arrays containing platinum electrodes of different sizes, we experimentally evaluated the electrode performance in the recording of local field potentials (LFPs) and extracellular action potentials (EAPs) from the following cell preparations: acute brain slices, dissociated cell cultures, and organotypic slice cultures. Moreover, we simulated the potential spatial decay of point-current sources to investigate signal averaging using known signal sources. We demonstrated that the noise and signal attenuation depend more on the electrode impedance than on electrode size, per se, especially for electrodes <10 µm in width or diameter to achieve high-spatial-resolution readout. By minimizing electrode impedance of small electrodes (<10 µm) via surface modification, we could maximize the signal-to-noise ratio to electrically visualize the propagation of axonal EAPs and to isolate single-unit spikes. Due to the large amplitude of LFP signals, recording quality was high and nearly independent of electrode size. These findings should be of value in configuring in vitro and in vivo microelectrode arrays for extracellular recordings with high spatial resolution in various applications.

14.
Front Neurosci ; 13: 376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080399

RESUMO

Deep hibernators go through several cycles of profound drops in body temperature during the winter season, with core temperatures sometimes reaching near freezing. Yet unlike non-hibernating mammals, they can sustain breathing rhythms. The physiological processes that make this possible are still not understood. In this study, we focused on the medullary Ventral Respiratory Column of a facultative hibernator, the Syrian hamster. Using shortened day-lengths, we induced a "winter-adapted" physiological state, which is a prerequisite for hibernation. When recording electrophysiological signals from acute slices in the winter-adapted pre-Bötzinger complex (preBötC), spike trains showed higher spike rates, amplitudes, complexity, as well as higher temperature sensitivity, suggesting an increase in connectivity and/or synaptic strength during the winter season. We further examined action potential waveforms and found that the depolarization integral, as measured by the area under the curve, is selectively enhanced in winter-adapted animals. This suggests that a shift in the ion handling kinetics is also being induced by the winter-adaptation program. RNA sequencing of respiratory pre-motor neurons, followed by gene set enrichment analysis, revealed differential regulation and splicing in structural, synaptic, and ion handling genes. Splice junction analysis suggested that differential exon usage is occurring in a select subset of ion handling subunits (ATP1A3, KCNC3, SCN1B), and synaptic structure genes (SNCB, SNCG, RAB3A). Our findings show that the hamster respiratory center undergoes a seasonally-cued alteration in electrophysiological properties, likely protecting against respiratory failure at low temperatures.

15.
IEEE Biomed Circuits Syst Conf ; 2017: 1-4, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29780971

RESUMO

Although the mechanisms of recording bioelectrical signals from different types of electrogenic cells (neurons, cardiac cells etc.) by means of planar metal electrodes have been extensively studied, the recording characteristics and conditions for very small electrode sizes are not yet established. Here, we present a combined experimental and computational approach to elucidate, how the electrode size influences the recorded signals, and how inherent properties of the electrode, such as impedance, noise, and transmission characteristics shape the signal. We demonstrate that good quality recordings can be achieved with electrode diameters of less than 10 µm, provided that impedance reduction measures have been implemented and provided that a set of requirements for signal amplification has been met.

16.
Neuron ; 99(1): 117-134.e11, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29937281

RESUMO

Many brain regions contain local interneurons of distinct types. How does an interneuron type contribute to the input-output transformations of a given brain region? We addressed this question in the mouse retina by chemogenetically perturbing horizontal cells, an interneuron type providing feedback at the first visual synapse, while monitoring the light-driven spiking activity in thousands of ganglion cells, the retinal output neurons. We uncovered six reversible perturbation-induced effects in the response dynamics and response range of ganglion cells. The effects were enhancing or suppressive, occurred in different response epochs, and depended on the ganglion cell type. A computational model of the retinal circuitry reproduced all perturbation-induced effects and led us to assign specific functions to horizontal cells with respect to different ganglion cell types. Our combined experimental and theoretical work reveals how a single interneuron type can differentially shape the dynamical properties of distinct output channels of a brain region.


Assuntos
Retroalimentação , Interneurônios/fisiologia , Células Ganglionares da Retina/fisiologia , Células Horizontais da Retina/fisiologia , Visão Ocular/fisiologia , Animais , Cálcio/metabolismo , Camundongos , Modelos Neurológicos , Células Fotorreceptoras de Vertebrados , Células Bipolares da Retina , Sinapses
17.
Sci Rep ; 7(1): 978, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428560

RESUMO

We present a novel, all-electric approach to record and to precisely control the activity of tens of individual presynaptic neurons. The method allows for parallel mapping of the efficacy of multiple synapses and of the resulting dynamics of postsynaptic neurons in a cortical culture. For the measurements, we combine an extracellular high-density microelectrode array, featuring 11'000 electrodes for extracellular recording and stimulation, with intracellular patch-clamp recording. We are able to identify the contributions of individual presynaptic neurons - including inhibitory and excitatory synaptic inputs - to postsynaptic potentials, which enables us to study dendritic integration. Since the electrical stimuli can be controlled at microsecond resolution, our method enables to evoke action potentials at tens of presynaptic cells in precisely orchestrated sequences of high reliability and minimum jitter. We demonstrate the potential of this method by evoking short- and long-term synaptic plasticity through manipulation of multiple synaptic inputs to a specific neuron.


Assuntos
Análise em Microsséries/instrumentação , Neurônios/citologia , Técnicas de Patch-Clamp/métodos , Sinapses/fisiologia , Potenciais de Ação , Animais , Microeletrodos , Plasticidade Neuronal , Neurônios/fisiologia , Ratos , Ratos Wistar
18.
Elife ; 62017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28990925

RESUMO

Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Animais , Células Cultivadas , Microscopia Intravital , Microeletrodos , Ratos Wistar
19.
Neuron ; 89(2): 409-22, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26796692

RESUMO

The neural representation of information suffers from "noise"-the trial-to-trial variability in the response of neurons. The impact of correlated noise upon population coding has been debated, but a direct connection between theory and experiment remains tenuous. Here, we substantiate this connection and propose a refined theoretical picture. Using simultaneous recordings from a population of direction-selective retinal ganglion cells, we demonstrate that coding benefits from noise correlations. The effect is appreciable already in small populations, yet it is a collective phenomenon. Furthermore, the stimulus-dependent structure of correlation is key. We develop simple functional models that capture the stimulus-dependent statistics. We then use them to quantify the performance of population coding, which depends upon interplays of feature sensitivities and noise correlations in the population. Because favorable structures of correlation emerge robustly in circuits with noisy, nonlinear elements, they will arise and benefit coding beyond the confines of retina.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Feminino , Rede Nervosa/citologia , Coelhos
20.
Neuron ; 89(1): 177-93, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26711119

RESUMO

Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease.


Assuntos
Células Amácrinas/citologia , Proteínas do Citoesqueleto/metabolismo , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Nistagmo Congênito/metabolismo , Vias Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos Transgênicos , Percepção de Movimento/fisiologia , Estimulação Luminosa/métodos , Retina/fisiologia , Células Ganglionares da Retina/citologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA