Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077486

RESUMO

The Zika virus protease NS2B-NS3 has a binding site formed with the participation of a H51-D75-S135 triad presenting two forms, active and inactive. Studies suggest that the inactive conformation is a good target for the design of inhibitors. In this paper, we evaluated the co-crystallized structures of the protease with the inhibitors benzoic acid (5YOD) and benzimidazole-1-ylmethanol (5H4I). We applied a protocol consisting of two steps: first, classical molecular mechanics energy minimization followed by classical molecular dynamics were performed, obtaining stabilized molecular geometries; second, the optimized/relaxed geometries were used in quantum biochemistry and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) calculations to estimate the ligand interactions with each amino acid residue of the binding pocket. We show that the quantum-level results identified essential residues for the stabilization of the 5YOD and 5H4I complexes after classical energy minimization, matching previously published experimental data. The same success, however, was not observed for the MM-PBSA simulations. The application of quantum biochemistry methods seems to be more promising for the design of novel inhibitors acting on NS2B-NS3.


Assuntos
Infecção por Zika virus , Zika virus , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Serina Endopeptidases/metabolismo , Succinatos , Proteínas não Estruturais Virais/metabolismo , Zika virus/metabolismo
2.
J Appl Biomed ; 19(4): 210-219, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34907740

RESUMO

This study investigated whether a 30-day co-treatment with 1 g/kg glutamine dipeptide (GdiP) and 1 U/kg regular (rapid acting) or 5 U/kg degludec (long acting) insulins modifies glucose homeostasis and liver metabolism of alloxan-induced type 1 diabetic (T1D) male Swiss mice undergoing insulin-induced hypoglycemia (IIH). Glycemic curves were measured in fasted mice after IIH with 1 U/kg regular insulin. One hour after IIH, the lipid profile and AST and ALT activities were assayed in the serum. Morphometric analysis was assessed in the liver sections stained with hematoxylin-eosin and glycolysis, glycogenolysis, gluconeogenesis and ureagenesis were evaluated in perfused livers. T1D mice receiving GdiP or the insulins had a smaller blood glucose drop at 60 minutes after IIH, which was not sustained during the subsequent period up to 300 minutes. The 30-day treatment of T1D mice with insulin degludec, but not with regular insulin, improved fasting glycemia, body weight gain and serum activity of AST and ALT. Treatments with insulin degludec, GdiP and insulin degludec + GdiP decreased the liver capacity in synthesizing glucose from alanine. GdiP, in combination with both insulins, was associated with increases in the serum triglycerides and, in addition, regular insulin and GdiP increased AST and ALT activities, which could be the consequence of hepatic glycogen overload. GdiP and the insulins improved the IIH, although to a small extent. Caution is recommended, however, with respect to the use of GdiP because of its increasing effects on serum triglycerides and AST plus ALT activities.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Dipeptídeos , Glutamina , Hipoglicemia , Insulina de Ação Prolongada , Insulinas , Animais , Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Dipeptídeos/efeitos adversos , Glucose/metabolismo , Glutamina/farmacologia , Homeostase , Hipoglicemia/induzido quimicamente , Insulina/efeitos adversos , Insulina de Ação Prolongada/farmacologia , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Triglicerídeos/efeitos adversos
3.
Phys Chem Chem Phys ; 22(6): 3570-3583, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31995079

RESUMO

Despite being recognized as a therapeutic target in the processes of cancer cell proliferation and metastasis for over 50 years, the interaction of the urokinase plasminogen activator uPA with its receptor uPAR still needs an improved understanding. High resolution crystallographic data (PDB ) of the uPA-uPAR binding geometry was used to perform quantum biochemistry computations within the density functional theory (DFT) framework. A divide to conquer methodology considering a mixed homogeneous/inhomogeneous dielectric model and explicitly taking water molecules into account was employed to obtain a large set of uPA-uPAR residue-residue interaction energies. In order of importance, not only were Phe25 > Tyr24 > Trp30 > Ile28 shown to be the most relevant uPA residues binding it to uPAR, but the residues Lys98 > His87 > Gln40 > Asn22 > Lys23 > Val20 also had significant interaction energies, which helps to explain published experimental mutational data. Furthermore, the results obtained with the uPA-uPAR in/homogeneous dielectric function show that a high dielectric constant value ε = 40 is adequate to take into account the electrostatic environment at the interface between the proteins, while using a smaller value of ε (<10) leads to an overestimation of the uPA-uPAR binding energy. Hot spots of the uPA-uPAR binding domain were identified and a quantum biochemistry description of the uPAR blockers uPA21-30 and cyclo21,29uPA21-29[(S21C;H29C)] was performed, demonstrating that cyclization improves the stability of mimetic peptides without compromising their binding energies to uPAR.


Assuntos
Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/química , Sequência de Aminoácidos , Aminoácidos/química , Teoria da Densidade Funcional , Peptídeos Cíclicos/química , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Termodinâmica
4.
Parasitology ; 145(9): 1191-1198, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29642963

RESUMO

Chagas disease is a public health problem, affecting about 7 million people worldwide. Benznidazole (BZN) is the main treatment option, but it has limited effectiveness and can cause severe adverse effects. Drug delivery through nanoparticles has attracted the interest of the scientific community aiming to improve therapeutic options. The aim of this study was to evaluate the cytotoxicity of benznidazole-loaded calcium carbonate nanoparticles (BZN@CaCO3) on Trypanosoma cruzi strain Y. It was observed that BZN@CaCO3 was able to reduce the viability of epimastigote, trypomastigote and amastigote forms of T. cruzi with greater potency when compared with BZN. The amount of BZN necessary to obtain the same effect was up to 25 times smaller when loaded with CaCO3 nanoparticles. Also, it was observed that BZN@CaCO3 enhanced the selectivity index. Furthermore, the cell-death mechanism induced by both BZN and BZN@CaCO3 was evaluated, indicating that both substances caused necrosis and changed mitochondrial membrane potential.


Assuntos
Carbonato de Cálcio/química , Nanocápsulas/química , Nitroimidazóis/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Células Epiteliais/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanocápsulas/toxicidade
5.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632299

RESUMO

The PI3K class I is composed of four PI3K isoforms that serve as regulatory enzymes governing cellular metabolism, proliferation, and survival. The hyperactivation of PI3Kα is observed in various types of cancer and is linked to poor prognosis. Unfortunately, the development inhibitors selectively targeting one of the isoforms remains challenging, with only few agents in clinical use. The main difficulty arises from the high conservation among residues at the ATP-binding pocket across isoforms, which also serves as target pocket for inhibitors. In this work, molecular dynamics and quantum calculations were performed to investigate the molecular features guiding the binding of selective inhibitors, alpelisib and GDC-0326, into the ATP-binding pocket of PI3Kα. While molecular dynamics allowed crystallographic coordinates to relax, the interaction eergy between each amino acid residues and inhibitors was obtained by combining the Molecular Fractionation with Conjugated Caps scheme with Density Functional Theory calculations. In addition, the atomic charge of ligands in the bound and unbound (free) was calculated. Results indicated that the most relevant residues for the binding of alpelisib are Ile932, Glu859, Val851, Val850, Tyr836, Met922, Ile800, and Ile848, while the most important residues for the binding of GDC-0326 are Ile848, Ile800, Ile932, Gln859, Glu849, and Met922. In addition, residues Trp780, Ile800, Tyr836, Ile848, Gln859 Val850, Val851, Ile932 and Met922 are common hotspots for both inhibitors. Overall, the results from this work contribute to improving the understanding of the molecular mechanisms controlling selectivity and highlight important interactions to be considered during the rational design of new agents.Communicated by Ramaswamy H. Sarma.

6.
Future Virol ; 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37064326

RESUMO

Aim: This study aimed to analyze the phylogenetic relationships between the ACE2 of humans and other animals and investigate the potential interaction between SARS-CoV-2 RBD and ACE2 of different species. Materials & methods: The phylogenetic construction and molecular interactions were assessed using computational models. Results & conclusion: Despite the evolutionary distance, 11 species had a perfect fit for the interaction between their ACE2 and SARS-CoV-2 RBD (Chinchilla lanigera, Neovison vison, Rhinolophus sinicus, Emballonura alecto, Saccopteryx bilineata, Numida meleagris). Among them, the avian N. meleagris was reported for the first time in this study as a probable SARS-CoV-2 host due to the strong molecular interactions. Therefore, predicting potential hosts for SARS-CoV-2 for understanding the epidemiological cycle and proposal of surveillance strategies.


Here, computational analysis was employed to predict the interaction between the Spike protein from SARS-COV-2 with the ACE2 receptor with animals that could serve as a reservoir for SARS-CoV-2 spillover. Our results reported for the first time that N. meleagris could act as a possible host for SARS-CoV-2.

7.
J Biomed Nanotechnol ; 17(1): 131-148, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653502

RESUMO

Graphene, including graphene quantum dots, its oxide and unoxidized forms (pure graphene) have several properties, like fluorescence, electrical conductivity, theoretical surface area, low toxicity, and high biocompatibility. In this study, we evaluated genotoxicity (in silico analysis using the functional density theory-FDT), cytotoxicity (human glioblastoma cell line), in vivo pharmacokinetics, in vivo impact on microcirculation and cell internalization assay. It was also radiolabeled with lutetium 177 (177Lu), a beta emitter radioisotope to explore its therapeutic use as nanodrug. Finally, the impact of its disposal in the environment was analyzed using ecotoxicological evaluation. FDT analysis demonstrated that graphene can construct covalent and non-covalent bonds with different nucleobases, and graphene oxide is responsible for generation of reactive oxygen species (ROS), corroborating its genotoxicity. On the other hand, non-cytotoxic effect on glioblastoma cells could be demonstrated. The pharmacokinetics analysis showed high plasmatic concentration and clearance. Topical application of 0.1 and 1 mg/kg of graphene nanoparticles on the hamster skinfold preparation did not show inflammatory effect. The cell internalization assay showed that 1-hour post contact with cells, graphene can cross the plasmatic membrane and accumulate in the cytoplasm. Radio labeling with 177Lu is possible and its use as therapeutic nanosystem is viable. Finally, the ecotoxicity analysis showed that A. silina exposed to graphene showed pronounced uptake and absorption in the nauplii gut and formation of ROS. The data obtained showed that although being formed exclusively of carbon and carbon-oxygen, graphene and graphene oxide respectively generate somewhat contradictory results and more studies should be performed to certify the safety use of this nanoplatform.


Assuntos
Grafite , Nanopartículas , Pontos Quânticos , Sobrevivência Celular , Grafite/toxicidade , Humanos , Óxidos , Espécies Reativas de Oxigênio
8.
Toxicon ; 137: 168-172, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28826757

RESUMO

Chagas disease, considered a neglected disease, is a parasitic infection caused by Trypanosoma cruzi, which is endemic throughout the world. Previously, the antimicrobial effect of Mastoparan (MP) from Polybia paulista wasp venom against bacteria was described. To continue the study, we report in this short communication the antimicrobial effect of MP against Trypanosoma cruzi. MP inhibits all T. cruzi developmental forms through the inhibition of TcGAPDH suggested by the molecular docking. In conclusion, we suggest there is an antimicrobial effect also on T. cruzi.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Peptídeos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Venenos de Vespas/farmacologia , Animais , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intercelular , Macaca mulatta , Simulação de Acoplamento Molecular , Trypanosoma cruzi/crescimento & desenvolvimento
9.
Mar Biotechnol (NY) ; 19(1): 49-64, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28150103

RESUMO

A new lectin from Aplysia dactylomela eggs (ADEL) was isolated by affinity chromatography on HCl-activated Sepharose™ media. Hemagglutination caused by ADEL was inhibited by several galactosides, mainly galacturonic acid (Ka = 6.05 × 106 M-1). The primary structure of ADEL consists of 217 residues, including 11 half-cystines involved in five intrachain and one interchain disulfide bond, resulting in a molecular mass of 57,228 ± 2 Da, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. ADEL showed high similarity with lectins isolated from Aplysia eggs, but not with other known lectins, indicating that these lectins could be grouped into a new family of animal lectins. Three glycosylation sites were found in its polypeptide backbone. Data from peptide-N-glycosidase F digestion and MS suggest that all oligosaccharides attached to ADEL are high in mannose. The secondary structure of ADEL is predominantly ß-sheet, and its tertiary structure is sensitive to the presence of ligands, as observed by CD. A 3D structure model of ADEL was created and shows two domains connected by a short loop. Domain A is composed of a flat three-stranded and a curved five-stranded ß-sheet, while domain B presents a flat three-stranded and a curved four-stranded ß-sheet. Molecular docking revealed favorable binding energies for interactions between lectin and galacturonic acid, lactose, galactosamine, and galactose. Moreover, ADEL was able to agglutinate and inhibit biofilm formation of Staphylococcus aureus, suggesting that this lectin may be a potential alternative to conventional use of antimicrobial agents in the treatment of infections caused by Staphylococcal biofilms.


Assuntos
Antibacterianos/química , Aplysia/química , Biofilmes/efeitos dos fármacos , Lectinas/química , Staphylococcus aureus/efeitos dos fármacos , Zigoto/química , Sequência de Aminoácidos , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Aplysia/genética , Aplysia/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosídeos/farmacologia , Expressão Gênica , Testes de Inibição da Hemaglutinação , Ácidos Hexurônicos/farmacologia , Lectinas/genética , Lectinas/isolamento & purificação , Lectinas/farmacologia , Simulação de Acoplamento Molecular , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Staphylococcus aureus/crescimento & desenvolvimento
10.
Artigo em Inglês | MEDLINE | ID: mdl-16511292

RESUMO

Lectins from the Diocleinae subtribe (Leguminosae) are highly similar proteins that promote various biological activities with distinctly differing potencies. The structural basis for this experimental data is not yet fully understood. Dioclea rostrata lectin was purified and crystallized by hanging-drop vapour diffusion at 293 K. The crystal belongs to the orthorhombic space group I222, with unit-cell parameters a = 61.51, b = 88.22, c = 87.76 A. Assuming the presence of one monomer per asymmetric unit, the solvent content was estimated to be about 47.9%. A complete data set was collected at 1.87 A resolution.


Assuntos
Fabaceae/química , Lectinas de Plantas/química , Sementes/química , Cristalização , Cristalografia por Raios X , Lectinas de Plantas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA