Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 139(5): 920-33, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19913286

RESUMO

Genome haploidization during meiosis depends on recognition and association of parental homologous chromosomes. The C. elegans SUN/KASH domain proteins Matefin/SUN-1 and ZYG-12 have a conserved role in this process. They bridge the nuclear envelope, connecting the cytoplasm and the nucleoplasm to transmit forces that allow chromosome movement and homolog pairing and prevent nonhomologous synapsis. Here, we show that Matefin/SUN-1 forms rapidly moving aggregates at putative chromosomal attachment sites in the meiotic transition zone (TZ). We analyzed requirements for aggregate formation and identified multiple phosphotarget residues in the nucleoplasmic domain of Matefin/SUN-1. These CHK-2 dependent phosphorylations occur in leptotene/zygotene, diminish during pachytene and are involved in pairing. Mimicking phosphorylation causes an extended TZ and univalents at diakinesis. Our data suggest that the properties of the nuclear envelope are altered during the time window when homologs are sorted and Matefin/SUN-1 aggregates form, thereby controling the movement, homologous pairing and interhomolog recombination of chromosomes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Pareamento Cromossômico , Meiose , Microtúbulos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Quinase do Ponto de Checagem 2 , Cromossomos/metabolismo , Prófase Meiótica I , Mutação , Membrana Nuclear/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Serina/metabolismo
2.
Mol Cell ; 54(4): 698-710, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24837679

RESUMO

RNA-based regulation and CRISPR/Cas transcription factors (CRISPR-TFs) have the potential to be integrated for the tunable modulation of gene networks. A major limitation of this methodology is that guide RNAs (gRNAs) for CRISPR-TFs can only be expressed from RNA polymerase III promoters in human cells, limiting their use for conditional gene regulation. We present new strategies that enable expression of functional gRNAs from RNA polymerase II promoters and multiplexed production of proteins and gRNAs from a single transcript in human cells. We use multiple RNA regulatory strategies, including RNA-triple-helix structures, introns, microRNAs, and ribozymes, with Cas9-based CRISPR-TFs and Cas6/Csy4-based RNA processing. Using these tools, we efficiently modulate endogenous promoters and implement tunable synthetic circuits, including multistage cascades and RNA-dependent networks that can be rewired with Csy4 to achieve complex behaviors. This toolkit can be used for programming scalable gene circuits and perturbing endogenous networks for biology, therapeutic, and synthetic biology applications.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Íntrons/genética , Íntrons/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Catalítico/metabolismo , Biologia Sintética , Fatores de Transcrição/genética , Pequeno RNA não Traduzido
3.
PLoS Genet ; 6(11): e1001219, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21124819

RESUMO

The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2-dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Prófase Meiótica I , Proteínas Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoesqueleto/metabolismo , Quebras de DNA de Cadeia Dupla , Genótipo , Mitose , Modelos Biológicos , Estrutura Quaternária de Proteína , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Complexo Sinaptonêmico/metabolismo
4.
Dev Cell ; 12(6): 873-85, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17543861

RESUMO

We identify a highly specific mutation (jf18) in the Caenorhabditis elegans nuclear envelope protein matefin MTF-1/SUN-1 that provides direct evidence for active involvement of the nuclear envelope in homologous chromosome pairing in C. elegans meiosis. The reorganization of chromatin in early meiosis is disrupted in mtf-1/sun-1(jf18) gonads, concomitant with the absence of presynaptic homolog alignment. Synapsis is established precociously and nonhomologously. Wild-type leptotene/zygotene nuclei show patch-like aggregations of the ZYG-12 protein, which fail to develop in mtf-1/sun-1(jf18) mutants. These patches remarkably colocalize with a component of the cis-acting chromosomal pairing center (HIM-8) rather than the centrosome. Our data on this mtf-1/sun-1 allele challenge the previously postulated role of the centrosome/spindle organizing center in chromosome pairing, and clearly support a role for MTF-1/SUN-1 in meiotic chromosome reorganization and in homolog recognition, possibly by mediating local aggregation of the ZYG-12 protein in meiotic nuclei.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Pareamento Cromossômico , Meiose , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Recombinação Genética , Animais , Animais Geneticamente Modificados , Apoptose , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Replicação do DNA , Gônadas/metabolismo , Hibridização in Situ Fluorescente , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/genética
5.
Transl Oncol ; 11(2): 511-517, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29524828

RESUMO

Hepatitis B virus (HBV) targets the liver and is a major driver for liver cancer. Clinical data suggest that HBV infection is associated with reduced response to treatment with the multi-kinase inhibitor sorafenib, the first available molecularly targeted anti-hepatocellular carcinoma (HCC) drug. Given that Raf is one of the major targets of sorafenib, we investigated the activation state of the Raf-Mek-Erk pathway in the presence of HBV and in response to sorafenib. Here we show that hepatoma cells with replicating HBV are less susceptible to sorafenib inhibitory effect as compared to cells in which HBV expression is suppressed. However, although HBV replication is associated with increased level of pErk, its blockade only modestly augments sorafenib effect. In contrast, the phosphorylated form of the pro-oncogenic Mitogen-Activated Protein Kinase 14 (pMAPK14), a protein kinase that was recently linked to sorafenib resistance, is induced in sorafenib-treated hepatoma cells in association with HBV X protein expression. Knocking down pMAPK14 results in augmentation of the therapeutic efficacy of sorafenib and largely alleviates resistance to sorafenib in the presence of HBV. Thus, this study suggests that HBV promotes HCC resistance to sorafenib. Combining pMAPK14 inhibitors with sorafenib may be beneficial in patients with HBV-associated HCC.

6.
Int Rev Cytol ; 226: 1-62, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12921235

RESUMO

The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.


Assuntos
Núcleo Celular/fisiologia , Doenças Genéticas Inatas/fisiopatologia , Lâmina Nuclear/fisiologia , Proteínas Nucleares/fisiologia , Animais , Núcleo Celular/ultraestrutura , Doenças Genéticas Inatas/genética , Humanos , Lâmina Nuclear/ultraestrutura
7.
Novartis Found Symp ; 264: 231-40; discussion 240-5, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15773757

RESUMO

The C. elegans genome encodes a single lamin protein (Ce-lamin), three LEM domain proteins (Ce-emerin, Ce-MAN1 and LEM-3) and a single BAF protein (Ce-BAF). Down-regulation of Ce-lamin causes embryonic lethality. Abnormalities include rapid changes in nuclear morphology during interphase, inability of cells to complete mitosis, abnormal condensation of chromatin, clustering of nuclear pore complexes (NPCs), and missing or abnormal germ cells. Ce-emerin and Ce-MAN1 are both embedded in the inner nuclear membrane, and both bind Ce-lamin and Ce-BAF; in addition, both require Ce-lamin for their localization. Mutations in human emerin cause X-linked recessive Emery-Dreifuss muscular dystrophy. In C. elegans, loss of Ce-emerin alone has no detectable phenotype, while loss of 90% Ce-MAN1 causes approximately 15% embryonic lethality. However in worms that lack Ce-emerin, a approximately 90% reduction of Ce-MAN1 is lethal to all embryos by the 100-cell stage, with a phenotype involving chromatin condensation and repeated cycles of anaphase chromosome bridging and cytokinesis. The anaphase-bridged chromatin retained a mitosis-specific phosphohistone H3 epitope, and failed to recruit detectable Ce-lamin or Ce-BAF. Down-regulation of Ce-BAF showed similar phenotypes. These findings suggest that lamin, LEM-domain proteins and BAF are part of a lamina network essential for chromatin organization and cell division, and that Ce-emerin and Ce-MAN1 share at least one and possibly multiple overlapping functions, which may be relevant to Emery-Dreifuss muscular dystrophy.


Assuntos
Ciclo Celular/fisiologia , Células Germinativas/crescimento & desenvolvimento , Laminas/metabolismo , Membrana Nuclear/fisiologia , Proteínas Nucleares/metabolismo , Transdução de Sinais , Animais , Humanos , Distrofia Muscular de Emery-Dreifuss/metabolismo , Matriz Nuclear/fisiologia
8.
Proc Natl Acad Sci U S A ; 101(18): 6987-92, 2004 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15100407

RESUMO

Caenorhabditis elegans mtf-1 encodes matefin, which has a predicted SUN domain, a coiled-coil region, an anti-erbB-2 IgG domain, and two hydrophobic regions. We show that matefin is a nuclear membrane protein that colocalizes in vivo with Ce-lamin, the single nuclear lamin protein in C. elegans, and binds Ce-lamin in vitro but does not require Ce-lamin for its localization. Matefin is detected in all embryonic cells until midembryogenesis and thereafter only in germ-line cells. Embryonic matefin is maternally deposited, and matefin is the first nuclear membrane protein known to have germ line-restricted expression. Animals homozygous for an mtf-1 deletion allele show that matefin is essential for germ line maturation and survival. However, matefin is also required for embryogenesis because mtf-1 (RNAi) embryos die around the approximately 300-cell stage with defects in nuclear structure, DNA content, and chromatin morphology. Down-regulating matefin in mes-3 animals only slightly enhances embryonic lethality, and elimination of UNC-84, the only other SUN-domain gene in C. elegans, has no affect on mtf-1 (RNAi) animals. Thus, mtf-1 mediates a previously uncharacterized pathway(s) required for embryogenesis as well as germ line proliferation or survival.


Assuntos
Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Laminas/metabolismo , Membrana Nuclear/metabolismo , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA