Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35148840

RESUMO

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismo
2.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33930332

RESUMO

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Assuntos
Antígenos CD/genética , Interações Hospedeiro-Patógeno/genética , Fatores Reguladores de Interferon/genética , Interferon Tipo I/genética , SARS-CoV-2/genética , Proteínas Virais/genética , Animais , Antígenos CD/química , Antígenos CD/imunologia , Sítios de Ligação , Linhagem Celular Tumoral , Chlorocebus aethiops , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/virologia , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Regulação da Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Complexo de Golgi/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Fatores Reguladores de Interferon/classificação , Fatores Reguladores de Interferon/imunologia , Interferon Tipo I/imunologia , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/imunologia , Transdução de Sinais , Células Vero , Proteínas Virais/química , Proteínas Virais/imunologia , Internalização do Vírus , Liberação de Vírus/genética , Liberação de Vírus/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
3.
Nature ; 604(7904): 134-140, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35130559

RESUMO

The SARS-CoV-2 virus has infected more than 261 million people and has led to more than 5 million deaths in the past year and a half1 ( https://www.who.org/ ). Individuals with SARS-CoV-2 infection typically develop mild-to-severe flu-like symptoms, whereas infection of a subset of individuals leads to severe-to-fatal clinical outcomes2. Although vaccines have been rapidly developed to combat SARS-CoV-2, there has been a dearth of antiviral therapeutics. There is an urgent need for therapeutics, which has been amplified by the emerging threats of variants that may evade vaccines. Large-scale efforts are underway to identify antiviral drugs. Here we screened approximately 18,000 drugs for antiviral activity using live virus infection in human respiratory cells and validated 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Among these candidates are 16 nucleoside analogues, the largest category of clinically used antivirals. This included the antivirals remdesivir and molnupiravir, which have been approved for use in COVID-19. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral. Moreover, we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogues synergistically inhibits SARS-CoV-2 infection in vitro and in vivo against emerging strains of SARS-CoV-2, suggesting a clinical path forward.


Assuntos
Antivirais , Avaliação Pré-Clínica de Medicamentos , Nucleosídeos , Pirimidinas , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , COVID-19/virologia , Linhagem Celular , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacologia , Pirimidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
4.
Nature ; 605(7911): 640-652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35361968

RESUMO

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Evolução Biológica , Vacinas contra COVID-19 , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemias/prevenção & controle , Variantes Farmacogenômicos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologia , Virulência
5.
PLoS Pathog ; 20(5): e1011669, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38781259

RESUMO

The virus severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, is the causative agent of the current COVID-19 pandemic. It possesses a large 30 kilobase (kb) genome that encodes structural, non-structural, and accessory proteins. Although not necessary to cause disease, these accessory proteins are known to influence viral replication and pathogenesis. Through the synthesis of novel infectious clones of SARS-CoV-2 that lack one or more of the accessory proteins of the virus, we have found that one of these accessory proteins, ORF8, is critical for the modulation of the host inflammatory response. Mice infected with a SARS-CoV-2 virus lacking ORF8 exhibit increased weight loss and exacerbated macrophage infiltration into the lungs. Additionally, infection of mice with recombinant SARS-CoV-2 viruses encoding ORF8 mutations found in variants of concern reveal that naturally occurring mutations in this protein influence disease severity. Our studies with a virus lacking this ORF8 protein and viruses possessing naturally occurring point mutations in this protein demonstrate that this protein impacts pathogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/genética , Camundongos , Humanos , Progressão da Doença , Proteínas Virais/genética , Proteínas Virais/metabolismo , Pulmão/virologia , Pulmão/patologia , Replicação Viral , Pneumonia/virologia , Pneumonia/patologia , Chlorocebus aethiops , Mutação , Células Vero , Feminino
6.
Nature ; 586(7830): 509-515, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32967005

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Furões/virologia , Humanos , Mesocricetus/virologia , Camundongos , Pneumonia Viral/imunologia , Primatas/virologia , SARS-CoV-2 , Vacinas Virais/imunologia
7.
PLoS Pathog ; 19(12): e1011870, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117830

RESUMO

The COVID-19 pandemic has claimed over 6.5 million lives worldwide and continues to have lasting impacts on the world's healthcare and economic systems. Several approved and emergency authorized therapeutics that inhibit early stages of the virus replication cycle have been developed however, effective late-stage therapeutical targets have yet to be identified. To that end, our lab identified that 2',3' cyclic-nucleotide 3'-phosphodiesterase (CNP) inhibits SARS-CoV-2 virion assembly. We show that CNP inhibits the generation of new SARS-CoV-2 virions, reducing intracellular titers without inhibiting viral structural protein translation. Additionally, we show that targeting of CNP to mitochondria is necessary for inhibition, blocking mitochondrial depolarization and implicating CNP's proposed role as an inhibitor of the mitochondrial permeabilization transition pore (mPTP) as the mechanism of virion assembly inhibition. We also demonstrate that an adenovirus expressing virus expressing both human ACE2 and CNP inhibits SARS-CoV-2 titers to undetectable levels in lungs of mice. Collectively, this work shows the potential of CNP to be a new SARS-CoV-2 antiviral target.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Humanos , Animais , COVID-19/metabolismo , Pandemias , Mitocôndrias/metabolismo , Montagem de Vírus , Antivirais/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(37): e2204717119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36040867

RESUMO

The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , Proteínas Virais Reguladoras e Acessórias , Virulência , COVID-19/virologia , Humanos , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais Reguladoras e Acessórias/genética , Virulência/genética , Replicação Viral/genética
9.
J Virol ; 97(11): e0133623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37846985

RESUMO

IMPORTANCE: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a wide spectrum of diseases in the human population, from asymptomatic infections to death. It is important to study the host differences that may alter the pathogenesis of this virus. One clinical finding in coronavirus disease 2019 (COVID-19) patients is that people with obesity or diabetes are at increased risk of severe illness from SARS-CoV-2 infection. We used a high-fat diet model in mice to study the effects of obesity and type 2 diabetes on SARS-CoV-2 infection as well as how these comorbidities alter the response to vaccination. We find that diabetic/obese mice have increased disease after SARS-CoV-2 infection and they have slower clearance of the virus. We find that the lungs of these mice have increased neutrophils and that removing these neutrophils protects diabetic/obese mice from disease. This demonstrates why these diseases have increased risk of severe disease and suggests specific interventions upon infection.


Assuntos
Vacinas contra COVID-19 , Diabetes Mellitus Tipo 2 , Obesidade , Eficácia de Vacinas , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Dieta , Camundongos Obesos , Obesidade/complicações , SARS-CoV-2 , Vacinas contra COVID-19/administração & dosagem
10.
J Virol ; 97(2): e0008923, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700640

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
Pesquisa , Virologia , Viroses , Humanos , COVID-19/prevenção & controle , Disseminação de Informação , Pandemias/prevenção & controle , Formulação de Políticas , Pesquisa/normas , Pesquisa/tendências , SARS-CoV-2 , Virologia/normas , Virologia/tendências , Viroses/prevenção & controle , Viroses/virologia , Vírus
11.
PLoS Comput Biol ; 19(5): e1011050, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146076

RESUMO

Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.


Assuntos
COVID-19 , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , SARS-CoV-2 , Atorvastatina/farmacologia , Teorema de Bayes , Células Endoteliais , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Reposicionamento de Medicamentos , Prontuários Médicos
12.
Am J Perinatol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729183

RESUMO

OBJECTIVE: Pregnant women are at increased risk of coronavirus disease 2019 (COVID-19). This could be explained through the prism of physiologic and immunologic changes in pregnancy. In addition, certain immunological reactions originate in the placenta in response to viral infections.This study aimed to investigate whether severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) can infect the human placenta and discuss its implications in the pathogenesis of adverse pregnancy outcomes. STUDY DESIGN: We conducted a retrospective cohort study in which we collected placental specimens from pregnant women who had a laboratory-confirmed SARS-CoV-2 infection. We performed RNA in situ hybridization assay on formalin-fixed paraffin-embedded tissues to establish the in vivo evidence for placental infectivity by this corona virus. In addition, we infected trophoblast isolated from uninfected term human placenta with SARS-CoV-2 variants to further provide in vitro evidence for such an infectivity. RESULTS: There was a total of 21 cases enrolled, which included 5 cases of spontaneous preterm birth (SPTB) and 2 intrauterine fetal demises (IUFDs). Positive staining of positive-sense strand of SARS-CoV-2 virions was detected in 15 placentas including 4 SPTB and both IUFDs. In vitro infection assay demonstrated that SARS-CoV-2 virions were highly capable of infecting both cytotrophoblast and syncytiotrophoblast. CONCLUSION: This study implies that placental SARS-CoV-2 infection may be associated with an increased risk of adverse obstetrical outcomes. KEY POINTS: · SARS-CoV-2 can effectively infect human placenta.. · Such infectivity is confirmed by in vitro experiments.. · Placental SARS-CoV-2 corelates with adverse obstetrical outcomes..

13.
J Allergy Clin Immunol ; 152(5): 1107-1120.e6, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37595760

RESUMO

BACKGROUND: Obesity and type 2 diabetes mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including coronavirus disease 2019. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines. OBJECTIVE: We sought to establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. METHODS: A murine model of diet-induced obesity and insulin resistance was used to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. RESULTS: Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet, HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8+ T-cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in mice fed a normal diet but not in HFD mice. CONCLUSIONS: The study demonstrated impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Vacinas Virais , Animais , Humanos , Camundongos , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Modelos Animais de Doenças , Imunogenicidade da Vacina , Dieta , Obesidade , RNA Mensageiro , Anticorpos Antivirais , Anticorpos Neutralizantes
14.
Clin Infect Dis ; 76(5): 786-794, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36285523

RESUMO

BACKGROUND: Aerosol inhalation is recognized as the dominant mode of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Three highly transmissible lineages evolved during the pandemic. One hypothesis to explain increased transmissibility is that natural selection favors variants with higher rates of viral aerosol shedding. However, the extent of aerosol shedding of successive SARS-CoV-2 variants is unknown. We aimed to measure the infectivity and rate of SARS-CoV-2 shedding into exhaled breath aerosol (EBA) by individuals during the Delta and Omicron waves and compared those rates with those of prior SARS-CoV-2 variants from our previously published work. METHODS: Individuals with coronavirus disease 2019 (COVID-19) (n = 93; 32 vaccinated and 20 boosted) were recruited to give samples, including 30-minute breath samples into a Gesundheit-II EBA sampler. Samples were quantified for viral RNA using reverse-transcription polymerase chain reaction and cultured for virus. RESULTS: Alpha (n = 4), Delta (n = 3), and Omicron (n = 29) cases shed significantly more viral RNA copies into EBAs than cases infected with ancestral strains and variants not associated with increased transmissibility (n = 57). All Delta and Omicron cases were fully vaccinated and most Omicron cases were boosted. We cultured virus from the EBA of 1 boosted and 3 fully vaccinated cases. CONCLUSIONS: Alpha, Delta, and Omicron independently evolved high viral aerosol shedding phenotypes, demonstrating convergent evolution. Vaccinated and boosted cases can shed infectious SARS-CoV-2 via EBA. These findings support a dominant role of infectious aerosols in transmission of SARS-CoV-2. Monitoring aerosol shedding from new variants and emerging pathogens can be an important component of future threat assessments and guide interventions to prevent transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Aerossóis e Gotículas Respiratórios , RNA Viral
15.
N Engl J Med ; 383(24): 2320-2332, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32877576

RESUMO

BACKGROUND: NVX-CoV2373 is a recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins and Matrix-M1 adjuvant. METHODS: We initiated a randomized, placebo-controlled, phase 1-2 trial to evaluate the safety and immunogenicity of the rSARS-CoV-2 vaccine (in 5-µg and 25-µg doses, with or without Matrix-M1 adjuvant, and with observers unaware of trial-group assignments) in 131 healthy adults. In phase 1, vaccination comprised two intramuscular injections, 21 days apart. The primary outcomes were reactogenicity; laboratory values (serum chemistry and hematology), according to Food and Drug Administration toxicity scoring, to assess safety; and IgG anti-spike protein response (in enzyme-linked immunosorbent assay [ELISA] units). Secondary outcomes included unsolicited adverse events, wild-type virus neutralization (microneutralization assay), and T-cell responses (cytokine staining). IgG and microneutralization assay results were compared with 32 (IgG) and 29 (neutralization) convalescent serum samples from patients with Covid-19, most of whom were symptomatic. We performed a primary analysis at day 35. RESULTS: After randomization, 83 participants were assigned to receive the vaccine with adjuvant and 25 without adjuvant, and 23 participants were assigned to receive placebo. No serious adverse events were noted. Reactogenicity was absent or mild in the majority of participants, more common with adjuvant, and of short duration (mean, ≤2 days). One participant had mild fever that lasted 1 day. Unsolicited adverse events were mild in most participants; there were no severe adverse events. The addition of adjuvant resulted in enhanced immune responses, was antigen dose-sparing, and induced a T helper 1 (Th1) response. The two-dose 5-µg adjuvanted regimen induced geometric mean anti-spike IgG (63,160 ELISA units) and neutralization (3906) responses that exceeded geometric mean responses in convalescent serum from mostly symptomatic Covid-19 patients (8344 and 983, respectively). CONCLUSIONS: At 35 days, NVX-CoV2373 appeared to be safe, and it elicited immune responses that exceeded levels in Covid-19 convalescent serum. The Matrix-M1 adjuvant induced CD4+ T-cell responses that were biased toward a Th1 phenotype. (Funded by the Coalition for Epidemic Preparedness Innovations; ClinicalTrials.gov number, NCT04368988).


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adolescente , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/efeitos adversos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Esquemas de Imunização , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Nanopartículas , Pandemias , Saponinas , Células Th1/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 117(48): 30687-30698, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184176

RESUMO

The SARS-CoV-2 pandemic has made it clear that we have a desperate need for antivirals. We present work that the mammalian SKI complex is a broad-spectrum, host-directed, antiviral drug target. Yeast suppressor screening was utilized to find a functional genetic interaction between proteins from influenza A virus (IAV) and Middle East respiratory syndrome coronavirus (MERS-CoV) with eukaryotic proteins that may be potential host factors involved in replication. This screening identified the SKI complex as a potential host factor for both viruses. In mammalian systems siRNA-mediated knockdown of SKI genes inhibited replication of IAV and MERS-CoV. In silico modeling and database screening identified a binding pocket on the SKI complex and compounds predicted to bind. Experimental assays of those compounds identified three chemical structures that were antiviral against IAV and MERS-CoV along with the filoviruses Ebola and Marburg and two further coronaviruses, SARS-CoV and SARS-CoV-2. The mechanism of antiviral activity is through inhibition of viral RNA production. This work defines the mammalian SKI complex as a broad-spectrum antiviral drug target and identifies lead compounds for further development.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Filoviridae/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Orthomyxoviridae/efeitos dos fármacos , Linhagem Celular , Genes Supressores , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
17.
J Infect Dis ; 225(10): 1765-1772, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-33507266

RESUMO

BACKGROUND: REGN3048 and REGN3051 are human monoclonal antibodies (mAb) targeting the spike glycoprotein on the Middle East respiratory syndrome coronavirus (MERS-CoV), which binds to the receptor dipeptidyl peptidase-4 (DPP4) and is necessary for infection of susceptible cells. METHODS: Preclinical study: REGN3048, REGN3051 and isotype immunoglobulin G (IgG) were administered to humanized DPP4 (huDPP4) mice 1 day prior to and 1 day after infection with MERS-CoV (Jordan strain). Virus titers and lung pathology were assessed. Phase 1 study: healthy adults received the combined mAb (n = 36) or placebo (n = 12) and followed for 121 days. Six dose levels were studied. Strict safety criteria were met prior to dose escalation. RESULTS: Preclinical study: REGN3048 plus REGN3051, prophylactically or therapeutically, was substantially more effective for reducing viral titer, lung inflammation, and pathology in huDPP4 mice compared with control antibodies and to each antibody monotherapy. Phase 1 study: REGN3048 plus REGN3051 was well tolerated with no dose-limiting adverse events, deaths, serious adverse events, or infusion reactions. Each mAb displayed pharmacokinetics expected of human IgG1 antibodies; it was not immunogenic. CONCLUSIONS: REGN3048 and REGN3051 in combination were well tolerated. The clinical and preclinical data support further development for the treatment or prophylaxis of MERS-CoV infection.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Dipeptidil Peptidase 4/metabolismo , Humanos , Imunoglobulina G , Camundongos , Glicoproteína da Espícula de Coronavírus
18.
Clin Infect Dis ; 75(1): e241-e248, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34519774

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemiology implicates airborne transmission; aerosol infectiousness and impacts of masks and variants on aerosol shedding are not well understood. METHODS: We recruited coronavirus disease 2019 (COVID-19) cases to give blood, saliva, mid-turbinate and fomite (phone) swabs, and 30-minute breath samples while vocalizing into a Gesundheit-II, with and without masks at up to 2 visits 2 days apart. We quantified and sequenced viral RNA, cultured virus, and assayed serum samples for anti-spike and anti-receptor binding domain antibodies. RESULTS: We enrolled 49 seronegative cases (mean days post onset 3.8 ±â€…2.1), May 2020 through April 2021. We detected SARS-CoV-2 RNA in 36% of fine (≤5 µm), 26% of coarse (>5 µm) aerosols, and 52% of fomite samples overall and in all samples from 4 alpha variant cases. Masks reduced viral RNA by 48% (95% confidence interval [CI], 3 to 72%) in fine and by 77% (95% CI, 51 to 89%) in coarse aerosols; cloth and surgical masks were not significantly different. The alpha variant was associated with a 43-fold (95% CI, 6.6- to 280-fold) increase in fine aerosol viral RNA, compared with earlier viruses, that remained a significant 18-fold (95% CI, 3.4- to 92-fold) increase adjusting for viral RNA in saliva, swabs, and other potential confounders. Two fine aerosol samples, collected while participants wore masks, were culture-positive. CONCLUSIONS: SARS-CoV-2 is evolving toward more efficient aerosol generation and loose-fitting masks provide significant but only modest source control. Therefore, until vaccination rates are very high, continued layered controls and tight-fitting masks and respirators will be necessary.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Humanos , Máscaras , RNA Viral , Aerossóis e Gotículas Respiratórios
19.
Gynecol Obstet Invest ; 87(2): 165-172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35526532

RESUMO

INTRODUCTION: Studies indicate a very low rate of SARS-CoV-2 detection in the placenta or occasionally a low rate of vertical transmission in COVID-19 pregnancy. SARS-CoV-2 Delta variant has become a dominant strain over the world and possesses higher infectivity due to mutations in its spike receptor-binding motif. CASE PRESENTATION: To determine whether SARS-CoV-2 Delta variant has increased potential for placenta infection and vertical transmission, we analyzed SARS-CoV-2 infection in the placenta, umbilical cord, and fetal membrane from a case where an unvaccinated mother and her neonate were COVID-19 positive. A 35-year-old primigravida with COVID-19 underwent an emergent cesarean delivery due to placental abruption in the setting of premature rupture of membranes. The neonate tested positive for SARS-CoV-2 within the first 24 h, and then again on days of life 2, 6, 13, and 21. The placenta exhibited intervillositis, increased fibrin deposition, and syncytiotrophoblast necrosis. Sequencing of viral RNA from fixed placental tissue revealed SAR-CoV-2 B.1.167.2 (Delta) variant. Both spike protein and viral RNA were abundantly present in syncytiotrophoblasts, cytotrophoblasts, umbilical cord vascular endothelium, and fetal membranes. CONCLUSION: We report with strong probability the first SARS-CoV-2 Delta variant transplacental transmission. Placental cells exhibited extensive apoptosis, senescence, and ferroptosis after SARS-CoV-2 Delta infection.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Adulto , COVID-19/diagnóstico , Feminino , Humanos , Recém-Nascido , Placenta/irrigação sanguínea , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico , RNA Viral , SARS-CoV-2
20.
J Infect Dis ; 224(10): 1730-1734, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34534320

RESUMO

Mobile phones are among the most highly touched personal objects. As part of a broader study on the contribution of fomites to influenza transmission, between 2017 and 2019, we swabbed mobile phones from 138 patients with influenza in 2 locations. Influenza viral RNA detection rates were 23% (23 of 99 phones) and 36% (14 of 39) in Hong Kong and Maryland, respectively. In Hong Kong, infectious influenza virus was recovered from 3 of 23 mobile phones which had influenza viral RNA detected. Mobile phone influenza contamination was positively associated with upper respiratory tract viral load and negatively associated with age. Cleaning personal objects of patients with influenza should be recommended, and individuals should avoid sharing objects with these patients.


Assuntos
Telefone Celular , Doenças Transmissíveis , Influenza Humana , Orthomyxoviridae , Hong Kong/epidemiologia , Humanos , Influenza Humana/epidemiologia , RNA Viral , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA