Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(29): 16329-16336, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31309210

RESUMO

Temperature evaluation through the measurement of emission intensities (the intensity ratio method) requires two distinct bands, one of which is used as a reference, and the emission intensity of the other is monitored as a function of a change in temperature. Herein, we report the influence of the excitation wavelength and a coupling scheme between the lanthanoid and defect emission from the host lattice to extend the temperature sensing range by using a single crystal of europium(iii) phosphate. The temperature dependence of the emission intensity was studied for different excitation wavelengths: 365 (intraconfigurational 4f2 excitation), 338 (defect excitation), and 254 nm (O2- → Eu3+ charge-transfer excitation), in the temperature range 293-865 K. We determined the Boltzmann equilibrium among different coupling schemes using a linear regression model to infer that for excitation at a 338 nm wavelength, and evaluating the intensity ratio between defect emission and the Eu3+ 5D0,17FJ transitions, the temperature sensing range can be extended up to at least 865 K, with relative sensitivity in the range 0.33-1.94% K-1 (at 750 K). The results showed a resolution of <1 K with excellent reproducibility, suggesting that the thermometers can be used with high reliability.

2.
Waste Manag ; 178: 239-256, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417310

RESUMO

Polymers represent around 25% of total waste from electronic and electric equipment. Any successful recycling process must ensure that polymer-specific functionalities are preserved, to avoid downcycling. This requires a precise characterization of particle compounds moving at high speeds on conveyor belts in processing plants. We present an investigation using imaging and point measurement spectral sensors on 23 polymers including ABS, PS, PC, PE-types, PP, PVC, PET-types, PMMA, and PTFE to assess their potential to perform under the operational conditions found in recycling facilities. The techniques applied include hyperspectral imaging sensors (HSI) to map reflectance in the visible to near infrared (VNIR), short-wave (SWIR) and mid-wave infrared (MWIR) as well as point Raman, FTIR and spectroradiometer instruments. We show that none of the sensors alone can identify all the compounds while meeting the industry operational requirements. HSI sensors successfully acquired simultaneous spatial and spectral information for certain polymer types. HSI, particularly the range between (1600-1900) nm, is suitable for specific identification of transparent and light-coloured (non-black) PC, PE-types, PP, PVC and PET-types plastics; HSI in the MWIR is able to resolve specific spectral features for certain PE-types, including black HDPE, and light-coloured ABS. Fast-acquisition Raman spectroscopy (down to 500 ms) enabled the identification of all polymers regardless their composition and presence of black pigments, however, it exhibited limited capacities in mapping applications. We therefore suggest a combination of both imaging and point measurements in a sequential design for enhanced robustness on industrial polymer identification.


Assuntos
Plásticos , Polímeros , Polímeros/química , Reciclagem , Indústrias
3.
MethodsX ; 5: 717-726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094201

RESUMO

Cosmogenic nuclide (CN) dating relies on specific target minerals such as quartz as markers to identify geologic events, including the timing of landscape evolution. The presence of feldspar in sediment samples poses a challenge to the separation of quartz and affects the chemical procedures for extracting the radioactive CNs 10Be and 26Al. Additionally, feldspar contamination reduces the 26Al/27Al ratio, thus hinders the accurate determination of 26Al by accelerator mass spectrometry (AMS). Using fluvial sediment samples from Central Asia, which contain 16-50 weight percent (wt.%) of feldspar, we show that the standard physical separation and chemical cleaning-up procedures for quartz-enrichment reduces the feldspar content to only 9-47 wt.%. We present a new froth flotation mineral-separation device and procedure that allows for very effective quartz enrichment before CN chemistry. Our flotation cell, which has a volume of 600 cm3, is built of borosilicate glass, holds up to 90 g of sample, and achieves quartz and feldspar separation in ≤2 h for very feldspar-rich samples. We trace the stepwise enrichment of quartz to 95-100% purity with our procedure by X-ray diffraction analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA