Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; 21(1): 90-98, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31696651

RESUMO

A liquid marble is a liquid droplet coated by a hydrophobic powder. The liquid marble does not wet adjacent surfaces and therefore can be manipulated as a dry soft body. A Belousov-Zhabotinsky (BZ) reaction is an oscillatory chemical reaction exhibiting waves of oxidation. We demonstrate how to make a photo-sensor from BZ medium liquid marbles. We insert electrodes into a liquid marble, prepared from BZ solution and coated with polyethylene powder. The electrodes record a potential difference which oscillates due to oxidation wave-fronts crossing the electrodes. When the BZ marble is illuminated by a light source, the oxidation wave-fronts are hindered and, thus, the electrical potential recorded ceases to oscillate. We characterise several types of responses of BZ marble photosensors to various stimuli, and provide explanations of the recorded activity. BZ liquid marble photosensors may find applications in the fields of liquid electronics, soft robotics and unconventional computing.

2.
Langmuir ; 35(40): 13182-13188, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31525934

RESUMO

Neuromorphic computing devices attempt to emulate features of biological nervous systems through mimicking the properties of synapses toward implementing the emergent properties of their counterparts, such as learning. Inspired by recent advances in the utilization of liquid marbles (LMs, microliter quantities of fluid coated in hydrophobic powder) for the creation of unconventional computing devices, we describe the development of LMs with neuromorphic properties through the use of copper coatings and 1.0 mg mL-1 carbon nanotube (CNT)-containing fluid cores. Experimentation was performed through sandwiching the LMs between two cup-style electrodes and stimulating them with repeated dc pulses at 3.0 V. Our results demonstrate that "entrainment" of CNT-filled copper LMs via periodic pulses can cause their electrical resistance to rapidly switch between high to low resistance profiles upon inverting the polarity of stimulation: the reduction in resistance between high and low profiles was approximately 88% after two rounds of entrainment. This effect was found to be reversible through reversion to the original stimulus polarity and was strengthened by repeated experimentation, as evidenced by a mean reduction in time to switching onset of 43%. These effects were not replicated in nanotube solutions not bound inside LMs. Our electrical characterization also reveals that nanotube-filled LMs exhibit pinched loop hysteresis IV profiles consistent with the description of memristors. We conclude by discussing the applications of this technology to the development of unconventional computing devices and the study of emergent characteristics in biological neural tissue.

3.
Soft Matter ; 15(17): 3541-3551, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30945723

RESUMO

Liquid marbles (LMs) have many promising roles in the ongoing development of microfluidics, microreactors, bioreactors, and unconventional computing. In many of these applications, the coalescence of two LMs is either required or actively discouraged, therefore it is important to study liquid marble collisions and establish parameters which enable the desired collision outcome. Recent reports on LM coalescence have focused on either two mobile LMs colliding, or an accelerating LM hitting a sessile LM with a backstop. A further possible scenario is the impact of a mobile LM against a non-supported static LM. This paper investigates such a collision, using high-speed videography for single-frame analysis. Multiple collisions were undertaken whilst varying the modified Weber number (We*) and offset ratios (X*). Parameter ranges of 1.0 < We* < 1.4 and 0.0 < X* < 0.1, resulted in a coalescence rate of approximately 50%. Whereas, parameter ranges X* > 0.25, and We* < 0.95 or We* > 1.55 resulted in 100% non-coalescence. Additionally, observations of LMs moving above a threshold velocity of 0.6 m s-1 have revealed a new and unusual deformation. Comparisons of the outcome of collisions whilst varying both the LM volume and the powder grain size have also been made, revealing a strong link. The results of this work provide a deeper understanding of LM coalescence, allowing improved control when designing future collision experiments.

4.
Langmuir ; 34(7): 2573-2580, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29359941

RESUMO

Liquid marbles (LMs) have recently attracted interest for use as cargo carriers in digital microfluidics and have successfully been implemented as signal carriers in collision-based unconventional computing circuits. Both application domains require LMs to roll over substantial distances and to survive a certain number of collisions without degrading. To evaluate the lifetime of LMs being subjected to movement and impact stresses, we have selected four types of coating to investigate: polytetrafluoroethylene (PTFE), ultrahigh density polyethylene (PE), Ni, and a mixture of Ni with PE (Ni-PE). Hierarchies of robustness have been constructed which showed that pure PE LMs survived the longest when stationary and in motion. Pure PTFE LMs were shown to be the least resilient to multiple impacts. The PTFE coating provided minimal protection against evaporative losses for small LM volumes (2 and 5 µL) however, larger LMs (10 µL) were shown to have good evaporative stabilities when stationary. Conversely, PE LMs showed a remarkable ability to withstand multiple impacts and were also stable when considering just passive evaporation. Hybrid Ni-PE LMs exhibited more resilience to multiple impacts compared to Ni LMs. Thus, when designing LM devices, it is paramount to determine impact pathways and select appropriate coating materials.

5.
Lab Chip ; 20(1): 136-146, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31777892

RESUMO

Liquid marbles (LMs) are of growing interest in many fields, including microfluidics, microreactors, sensors, and signal carriers. The generation of LMs is generally performed manually, although there has recently been a burst of publications involving 'automatic marble makers'. The characteristics of a LM is dependent on many things, including how it is generated, it is therefore important to be able to characterise LMs once made. Here is presented a novel contactless LM sensor, constructed on a PCB board with a comb-like structure of 36 interlacing electrical traces, 100 µm wide and 100 µm apart. This cheap, scalable, and easy to use sensor exploits the inherent impedance (comprised of the electrical resistance, capacitive reactance and inductive reactance) of different LMs. With it, parameters of a LM can be easily determined, without interfering with the LM. These parameters are (1) particle size of the LM coating, (2) the concentration of a NaCl solution used as the LM core, and (3) the volume of the LM. Additionally, due to the comb-like nature of the sensor, the accurate positioning (down to the inter-trace spacing) of the LM can be ascertained. The new sensor has been shown to work under both static and dynamic (mobile) conditions. The capacitance of a LM was recorded to be 0.10 pF, which compares well with the calculated value of 0.12 pF.

6.
R Soc Open Sci ; 6(4): 190078, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183147

RESUMO

External control of oscillation dynamics in the Belousov-Zhabotinsky (BZ) reaction is important for many applications including encoding computing schemes. When considering the BZ reaction, there are limited studies dealing with thermal cycling, particularly cooling, for external control. Recently, liquid marbles (LMs) have been demonstrated as a means of confining the BZ reaction in a system containing a solid-liquid interface. BZ LMs were prepared by rolling 50 µl droplets in polyethylene (PE) powder. Oscillations of electrical potential differences within the marble were recorded by inserting a pair of electrodes through the LM powder coating into the BZ solution core. Electrical potential differences of up to 100 mV were observed with an average period of oscillation ca 44 s. BZ LMs were subsequently frozen to -1°C to observe changes in the frequency of electrical potential oscillations. The frequency of oscillations reduced upon freezing to 11 mHz cf. 23 mHz at ambient temperature. The oscillation frequency of the frozen BZ LM returned to 23 mHz upon warming to ambient temperature. Several cycles of frequency fluctuations were able to be achieved.

7.
Sci Rep ; 8(1): 14153, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237417

RESUMO

A mechanical flip-flop actuator has been developed that allows for the facile re-routing and distribution of liquid marbles (LMs) in digital microfluidic devices. Shaped loosely like a triangle, the actuating switch pivots from one bistable position to another, being actuated by the very low mass and momentum of a LM rolling under gravity (~4 × 10-6 kg ms-1). The actuator was laser-cut from cast acrylic, held on a PTFE coated pivot, and used a PTFE washer. Due to the rocking motion of the switch, sequential LMs are distributed along different channels, allowing for sequential LMs to traverse parallel paths. This distributing effect can be easily cascaded, for example to evenly divide sequential LMs down four different paths. This lightweight, cheap and versatile actuator has been demonstrated in the design and construction of a LM-operated mechanical multiplication device - establishing its effectiveness. The actuator can be operated solely by gravity, giving it potential use in point-of-care devices in low resource areas.

8.
Faraday Discuss ; 164: 391-410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24466676

RESUMO

Latent fingerprints on metal surfaces may be visualized by exploiting the insulating characteristics of the fingerprint deposit as a "mask" to direct electrodeposition of an electroactive polymer to the bare metal between the fingerprint ridges. This approach is complementary to most latent fingerprint enhancement methods, which involve physical or chemical interaction with the fingerprint residue. It has the advantages of sensitivity (a nanoscale residue can block electron transfer) and, using a suitable polymer, optimization of visual contrast. This study extends the concept in two significant respects. First, it explores the feasibility of combining observation based on optical absorption with observation based on fluorescence. Second, it extends the methodology to materials (here, polypyrrole) that may undergo post-deposition substitution chemistry, here binding of a fluorophore whose size and geometry preclude direct polymerization of the functionalised monomer. The scenario involves a lateral spatial image (the whole fingerprint, first level detail) at the centimetre scale, with identification features (minutiae, second level detail) at the 100-200 microm scale and finer features (third level detail) at the 10-50 microm scale. However, the strategy used requires vertical spatial control of the (electro)chemistry at the 10-100 nm scale. We show that this can be accomplished by polymerization of pyrrole functionalised with a good leaving group, ester-bound FMOC, which can be hydrolysed and eluted from the deposited polymer to generate solvent "voids". Overall the "void" volume and the resulting effect on polymer dynamics facilitate entry and amide bonding of Dylight 649 NHS ester, a large fluorophore. FTIR spectra demonstrate the spatially integrated compositional changes. Both the hydrolysis and fluorophore functionalization were followed using neutron reflectivity to determine vertical spatial composition variations, which control image development in the lateral direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA