Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 469(10): 1325-1334, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28664409

RESUMO

Multiple voltage-gated calcium channels (VGCCs) contribute to the processing of nociceptive signals in primary afferent fibers. In addition, alteration of calcium channel activity is associated with a number of chronic pain conditions. Therefore, VGCCs have emerged as prime target for the management of either neuropathic or inflammatory pain, and selective calcium channel blockers have been shown to have efficacy in animal models and in the clinic. However, considering that multiple calcium channels contribute pain afferent signaling, broad-spectrum inhibitors of several channel isoforms may offer a net advantage in modulating pain. Here, we have analyzed the ability of the compound surfen to modulate calcium channels, and assessed its analgesic potential. We show that surfen is an equipotent blocker of both low- and high-voltage-activated calcium channels. Furthermore, spinal (intrathecal) delivery of surfen to mice produces sustained analgesia against both acute and chronic pain. Collectively, our data establish surfen as a broad-spectrum calcium channel inhibitor with analgesic potential, and raise the possibility of using surfen-derived compounds for the development of new pain-relieving drugs.


Assuntos
Analgésicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Dor Crônica/tratamento farmacológico , Inflamação/tratamento farmacológico , Animais , Sinalização do Cálcio/efeitos dos fármacos , Doença Crônica/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico
2.
Mol Pain ; 13: 1744806917724698, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28741432

RESUMO

Abstract: We recently reported that nerve injury or peripheral inflammation triggers an upregulation of the deubiquitinase, USP5 in mouse dorsal root ganglion and spinal dorsal horn. This leads to dysregulated ubiquitination of Cav3.2 T-type calcium channels, thus increasing Cav3.2 channel plasma membrane expression and nociceptive signaling in the primary afferent pain pathway. This phenomenon could be recapitulated by noninvasive, optogenetic activation of transient receptor potential vanilloid-1­expressing nociceptors, indicating that neuronal activity is a key player in this process. Given the relevance of the pro-inflammatory cytokine interleukin-1 beta in many forms of pathological pain, we hypothesized that interleukin-1 beta may be a critical cofactor required to drive upregulation of interactions between USP5 and Cav3.2 channels. Here, we report that gene expression, as well as protein levels for interleukin-1 beta and the endogenous interleukin-1 receptor-I antagonist, IL-1Ra are unaltered following conditioning stimulation of optogenetically targeted cutaneous nociceptors, indicating that neuronal activity is not a driver of interleukin-1 beta signaling. In contrast, co-immunoprecipitation experiments revealed that intrathecal administration of interleukin-1 beta in wild-type mice led to an increase in the interaction between USP5 and Cav3.2 in the spinal dorsal horn. Moreover, disruption of the interaction between USP5 and Cav3.2 with TAT peptides suppressed acute nocifensive responses produced by interleukin-1 beta, which was similar to that achieved by elimination of T-type channel activity with the channel blockers, mibefradil, or TTA-A2. Finally, this upregulation could be maintained in dorsal root ganglion neuron cultures exposed overnight to interleukin-1 beta, while the copresence of interleukin-1 receptor antagonist or the dampening of neuronal cell activity with tetrodotoxin attenuated this response. Altogether, our findings identify interleukin-1 beta as an upstream trigger for the upregulation of interactions between USP5 and Cav3.2 channels in the pain pathway, presumably by triggering increased firing activity in afferent fibers.


Assuntos
Canais de Cálcio Tipo T/genética , Interleucina-1beta/metabolismo , Dor/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Canais de Cálcio Tipo T/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuralgia/metabolismo , Neurônios/metabolismo , Nociceptores/metabolismo , Regulação para Cima
3.
Bioorg Med Chem ; 25(6): 1926-1938, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28233679

RESUMO

Low-voltage-activated calcium channels are important regulators of neurotransmission and membrane ion conductance. A plethora of intracellular events rely on their modulation. Accordingly, they are implicated in many disorders including epilepsy, Parkinson's disease, pain and other neurological diseases. Among different subfamilies, T-type calcium channels, and in particular the CaV3.2 isoform, were shown to be involved in nociceptive neurotransmission. The role of CaV3.2 in pain modulation was supported by demonstrating selective antisense oligonucleotide-mediated CaV3.2 knockdown, in vivo antinociceptive effects of T-type blockers, and pain attenuation in CaV3.2 knockout formalin-induced pain model. These Emerging investigations have provided new insights into targeting T-type calcium channels for pain management. Within this scope, various T-type calcium channel blockers have been developed such as mibefradil and ethosuximide. Although being active, most of these molecules interact with other receptors as well. This addresses the need for T-selectivity. Few selective T-type channel blockers of diverse chemical classes were developed such as ABT-639 and TTA-P2. Interestingly, R(-) efonidipine which is a dihydropyridine (DHP) showed T-channel selectivity. Systematic modification of 1,4-dihydropyridine scaffold introduced novel derivatives with 40-fold T-type selectivity over L-type calcium channels. Along these lines, substitution of the DHP core with various analogues favored T-selectivity and may serve as novel pharmacophores. Several dihydropyrimidine (DHPM) mimics were introduced by Squibb as potential candidates. As a continuation of this approach, the current study describes the synthesis of Novel N3 substituted DHPMs with structure similarities to the active DHPs. Different functional groups were introduced to the N3 position through a spacer to gain more information about activity and selectivity. Furthermore, the spacer aims at improving the metabolic stability of the molecules. Initial screening data by whole patch clamp technique showed a robust inhibition of Cav3.2 T-type channels by eleven compounds. Interestingly, four compounds of these were efficient selective T-type blockers. Based on selectivity and efficiency, two compounds were selected for in vivo evaluation in mouse models of inflammatory pain. Results showed effective attenuation of nociception and mechanical hypersensitivity.


Assuntos
Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Animais , Bloqueadores dos Canais de Cálcio/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Espectroscopia de Prótons por Ressonância Magnética
4.
Bioorg Med Chem ; 25(17): 4656-4664, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720332

RESUMO

As a bioisosteric strategy to overcome the poor metabolic stability of lead compound KYS05090S, a series of new fluoro-substituted 3,4-dihydroquinazoline derivatives was prepared and evaluated for T-type calcium channel (Cav3.2) block, cytotoxic effects and liver microsomal stability. Among them, compound 8h (KCP10068F) containing 4-fluorobenzyl amide and 4-cyclohexylphenyl ring potently blocked Cav3.2 currents (>90% inhibition) at 10µM concentration and exhibited cytotoxic effect (IC50=5.9µM) in A549 non-small cell lung cancer cells that was comparable to KYS05090S. Furthermore, 8h showed approximately a 2-fold increase in liver metabolic stability in rat and human species compared to KYS05090S. Based on these overall results, 8h (KCP10068F) may therefore represent a good backup compound for KYS05090S for further biological investigations as novel cytotoxic agent. In addition, compound 8g (KCP10067F) was found to partially protect from inflammatory pain via a blockade of Cav3.2 channels.


Assuntos
Analgésicos/síntese química , Bloqueadores dos Canais de Cálcio/síntese química , Quinazolinas/química , Quinidina/análogos & derivados , Células A549 , Analgésicos/química , Analgésicos/toxicidade , Animais , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/toxicidade , Canais de Cálcio Tipo T/química , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Flúor/química , Células HEK293 , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/metabolismo , Técnicas de Patch-Clamp , Quinazolinas/síntese química , Quinazolinas/toxicidade , Quinidina/síntese química , Quinidina/química , Quinidina/toxicidade , Ratos
5.
Pflugers Arch ; 468(2): 193-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26354962

RESUMO

T-type channels are important contributors to the initiation and the maintenance of chronic pain states. Blocking T-type channels is therefore a possible therapeutic strategy for relieving pain. Here, we report the Cav3.2 T-type channel blocking action of a previously reported small organic molecule, KYS-05090S. This compound was able to reduce transiently expressed Cav3.2 currents with low micromolar affinity and mediated a hyperpolarizing shift in half-inactivation potential. KYS-05090S was then tested in models of acute and neuropathic pain. KYS-05090S (10 µg/10 µl delivered intrathecally) significantly reduced acute pain induced by formalin in both the tonic and inflammatory phases. Its antinociceptive effect was not observed when delivered to Cav3.2 null-mice revealing a Cav3.2-dependent mechanism. KYS-05090S also reduced neuropathic pain in a model of partial sciatic nerve injury. Those results indicate that KYS-05090S mediates a potent analgesic effect in inflammatory and neuropathic pain through T-type channel modulation, suggesting that its scaffold could be explored as a new class of analgesic compounds.


Assuntos
Dor Aguda/tratamento farmacológico , Analgésicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Neuralgia/tratamento farmacológico , Quinazolinas/farmacologia , Potenciais de Ação , Analgésicos/uso terapêutico , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade , Quinazolinas/uso terapêutico
6.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27130589

RESUMO

BACKGROUND: Cav3.2 T-type calcium currents in primary afferents are enhanced in various painful pathological conditions, whereas inhibiting Cav3.2 activity or expression offers a strategy for combating the development of pain hypersensitivity. We have shown that Cav3.2 channel surface density is strongly regulated by the ubiquitination machinery and we identified the deubiquitinase USP5 as a Cav3.2 channel interacting protein and regulator of its cell surface expression. We also reported that USP5 is upregulated in chronic pain conditions. Conversely, preventing its binding to the channel in vivo mediates analgesia in inflammatory and neuropathic pain models. RESULTS: To identify which USP5 domain is responsible for the interaction, we used a series of USP5-derived peptides corresponding to different regions in nUBP, cUBP, UBA1, and UBA2 domains to outcompete full length USP5. We identified a stretch of amino acid residues within the cUBP domain of USP5 as responsible for binding to Cav3.2 calcium channels. Based on this information, we generated a TAT-cUBP1-USP5 peptide that could disrupt the Cav3.2/USP5 interaction in vitro and tested its physiological effect in well-established models of persistent inflammatory pain (CFA test) and chronic mononeuropathy and polyneuropathy in mice (partial sciatic nerve injury and the (ob/ob) diabetic spontaneous neuropathic mice). Our results reveal that the TAT-cUBP1-USP5 peptide attenuated mechanical hyperalgesia induced by both Complete Freund's Adjuvant and partial sciatic nerve injury, and thermal hyperalgesia in diabetic neuropathic animals. In contrast, Cav3.2 null mice were not affected by the peptide in the partial sciatic nerve injury model. Cav3.2 calcium channel levels in diabetic mice were reduced following the administration of the TAT-cUBP1-USP5 peptide. CONCLUSIONS: Our findings reveal a crucial region in the cUBP domain of USP5 that is important for substrate recognition and binding to the III-IV linker of Cav3.2 channels. Targeting the interaction of this region with the Cav3.2 channel can be exploited as the basis for therapeutic intervention into inflammatory and neuropathic pain.


Assuntos
Peptídeos Penetradores de Células/uso terapêutico , Endopeptidases/química , Inflamação/complicações , Inflamação/tratamento farmacológico , Neuralgia/complicações , Neuralgia/tratamento farmacológico , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo T/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/patologia , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/patologia
7.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27053601

RESUMO

BACKGROUND: T-type calcium channels are important contributors to signaling in the primary afferent pain pathway and are thus important targets for the development of analgesics. It has been previously reported that certain piperazine-based compounds such as flunarizine are able to inhibit T-type calcium channels. Thus, we hypothesized that novel piperazine compounds could potentially act as analgesics. RESULTS: Here, we have created a series of 14 compound derivatives around a diphenyl methyl-piperazine core pharmacophore. Testing their effects on transiently expressed Cav3.2 calcium channels revealed one derivative (3-((4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)methyl)-4-(2-methoxyphenyl)-1,2,5-oxadiazole 2-oxide, compound 10e) as a potent blocker. 10e mediate tonic block of these channels with an IC50 of around 4 micromolar. 10e also blocked Cav3.1 and Cav3.3 channels, but only weakly affected high-voltage-activated Cav1.2 and Cav2.2 channels. Intrathecal delivery of 10e mediated relief from formalin and complete Freund's adjuvant induced inflammatory pain that was ablated by genetic knockout of Cav3.2 channels. CONCLUSIONS: Altogether, our data identify a novel T-type calcium channel blocker with tight structure activity relationship (SAR) and relevant in vivo efficacy in inflammatory pain conditions.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Piperazinas/síntese química , Piperazinas/farmacologia , Dor Aguda/tratamento farmacológico , Dor Aguda/fisiopatologia , Analgésicos/uso terapêutico , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células HEK293 , Humanos , Injeções Espinhais , Masculino , Camundongos Endogâmicos C57BL , Piperazinas/uso terapêutico , Fatores de Tempo
8.
Pflugers Arch ; 467(6): 1237-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24990197

RESUMO

We have recently identified a class of dihydropyridine (DHP) analogues with 30-fold selectivity for T-type over L-type calcium channels that could be attributed to a modification of a key ester moiety. Based on these results, we examined a second series of compounds with similar attributes to determine if they had enhanced affinity for T-type channels. Whole-cell patch clamp experiments in transfected tsA-201 cells were used to screen these DHP derivatives for high affinity and selectivity for Cav3.2 over Cav1.2 L-type channels. The effects of the two lead compounds, termed N10 and N12, on Cav3.2 channel activity and gating were characterized in detail. When delivered intrathecally or intraperitoneally, these compounds mediated analgesia in a mouse model of acute inflammatory pain. The best compound from the initial screening, N12, was also able to reverse mechanical hyperalgesia produced by nerve injury. The compounds were ineffective in Cav3.2 null mice. Altogether, our data reveal a novel class of T-type channel blocking DHPs for potential pain therapies.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Di-Hidropiridinas/farmacologia , Neuralgia/tratamento farmacológico , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo T/genética , Linhagem Celular , Di-Hidropiridinas/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Bibliotecas de Moléculas Pequenas/farmacologia
9.
Pflugers Arch ; 467(12): 2485-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26286466

RESUMO

Voltage-activated calcium channels are important facilitators of nociceptive transmission in the primary afferent pathway. Consequently, molecules that block these channels are of potential use as pain therapeutics. Our group has recently reported on the identification of a novel class of dihydropyridines (DHPs) that included compounds with preferential selectivity for T-type over L-type channels. Among those compounds, M4 was found to be an equipotent inhibitor of both Cav1.2 L- and Cav3.2 T-type calcium channels. Here, we have further characterized the effects of this compound on other types of calcium channels and examined its analgesic effect when delivered either spinally (i.t.) or systemically (i.p.) to mice. Both delivery routes resulted in antinociception in a model of acute pain. Furthermore, M4 was able to reverse mechanical hyperalgesia produced by nerve injury when delivered intrathecally. M4 retained partial activity when delivered to Cav3.2 null mice, indicating that this compound acts on multiple targets. Additional whole-cell patch clamp experiments in transfected tsA-201 cells revealed that M4 also effectively blocks Cav3.3 (T-type) and Cav2.2 (N-type) currents. Altogether, our data indicate that broad-spectrum inhibition of multiple calcium channel subtypes can lead to potent analgesia in rodents.


Assuntos
Analgésicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Di-Hidropiridinas/farmacologia , Neuralgia/tratamento farmacológico , Analgésicos/uso terapêutico , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Linhagem Celular , Di-Hidropiridinas/uso terapêutico , Humanos , Ratos
10.
Mol Pain ; 11: 12, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25889575

RESUMO

BACKGROUND: Cav3.2 channels facilitate nociceptive transmission and are upregulated in DRG neurons in response to nerve injury or peripheral inflammation. We reported that this enhancement of Cav3.2 currents in afferent neurons is mediated by deubiquitination of the channels by the deubiquitinase USP5, and that disrupting USP5/Cav3.2 channel interactions protected from inflammatory and neuropathic pain. RESULTS: Here we describe the development of a small molecule screening assay for USP5-Cav3.2 disruptors, and report on two hits of a ~5000 compound screen - suramin and the flavonoid gossypetin. In mouse models of inflammatory pain and neuropathic pain, both suramin and gossypetin produced dose-dependent and long-lasting mechanical anti-hyperalgesia that was abolished or greatly attenuated in Cav3.2 null mice. Suramin and Cav3.2/USP5 Tat-disruptor peptides were also tested in models of diabetic neuropathy and visceral pain, and provided remarkable protection. CONCLUSIONS: Overall, our findings provide proof of concept for a new class of analgesics that target T-type channel deubiquitination.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Neuralgia/metabolismo , Neurônios Aferentes/metabolismo , Suramina/farmacologia , Proteases Específicas de Ubiquitina/metabolismo , Analgésicos/farmacologia , Animais , Gânglios Espinais/fisiopatologia , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Neuralgia/fisiopatologia
11.
Mol Pain ; 10: 77, 2014 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-25481027

RESUMO

BACKGROUND: T-type calcium channels and cannabinoid receptors are known to play important roles in chronic pain, making them attractive therapeutic targets. We recently reported on the design, synthesis and analgesic properties of a novel T-type channel inhibitor (NMP-7), which also shows mixed agonist activity on CB1 and CB2 receptors in vitro. Here, we analyzed the analgesic effect of systemically delivered NMP-7 (intraperitoneal (i.p.) or intragstric (i.g.) routes) on mechanical hypersensitivity in inflammatory pain induced by Complete Freund's Adjuvant (CFA) and neuropathic pain induced by sciatic nerve injury. RESULTS: NMP-7 delivered by either i.p. or i.g. routes produced dose-dependent inhibition of mechanical hyperalgesia in mouse models of inflammatory and neuropathic pain, without altering spontaneous locomotor activity in the open-field test at the highest active dose. Neither i.p. nor i.g. treatment reduced peripheral inflammation per se, as evaluated by examining paw edema and myeloperoxidase activity. The antinociception produced by NMP-7 in the CFA test was completely abolished in CaV3.2-null mice, confirming CaV3.2 as a key target. The analgesic action of intraperitoneally delivered NMP-7 was not affected by pretreatment of mice with the CB1 antagonist AM281, but was significantly attenuated by pretreatment with the CB2 antagonist AM630, suggesting that CB2 receptors, but not CB1 receptors are involved in the action of NMP-7 in vivo. CONCLUSIONS: Overall, our work shows that NMP-7 mediates a significant analgesic effect in a model of persistent inflammatory and chronic neuropathic pain by way of T-type channel modulation and CB2 receptor activation. Thus, this study provides a novel therapeutic avenue for managing chronic pain conditions via mixed CB ligands/T-type channel blockers.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Carbazóis/química , Inflamação/metabolismo , Neuralgia/tratamento farmacológico , Receptor CB2 de Canabinoide/metabolismo , Analgesia/métodos , Analgésicos/química , Animais , Peso Corporal , Carbazóis/farmacologia , Adjuvante de Freund/metabolismo , Hiperalgesia , Inflamação/tratamento farmacológico , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/metabolismo , Dor/tratamento farmacológico , Medição da Dor , Nervo Isquiático/lesões
12.
Mol Pain ; 9: 32, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23815854

RESUMO

BACKGROUND: Cannabinoid receptors and T-type calcium channels are potential targets for treating pain. Here we report on the design, synthesis and analgesic properties of a new mixed cannabinoid/T-type channel ligand, NMP-181. RESULTS: NMP-181 action on CB1 and CB2 receptors was characterized in radioligand binding and in vitro GTPγ[35S] functional assays, and block of transiently expressed human Cav3.2 T-type channels by NMP-181 was analyzed by patch clamp. The analgesic effects and in vivo mechanism of action of NMP-181 delivered spinally or systemically were analyzed in formalin and CFA mouse models of pain. NMP-181 inhibited peak CaV3.2 currents with IC50 values in the low micromolar range and acted as a CB2 agonist. Inactivated state dependence further augmented the inhibitory action of NMP-181. NMP-181 produced a dose-dependent antinociceptive effect when administered either spinally or systemically in both phases of the formalin test. Both i.t. and i.p. treatment of mice with NMP-181 reversed the mechanical hyperalgesia induced by CFA injection. NMP-181 showed no antinocieptive effect in CaV3.2 null mice. The antinociceptive effect of intrathecally delivered NMP-181 in the formalin test was reversed by i.t. treatment of mice with AM-630 (CB2 antagonist). In contrast, the NMP-181-induced antinociception was not affected by treatment of mice with AM-281 (CB1 antagonist). CONCLUSIONS: Our work shows that both T-type channels as well as CB2 receptors play a role in the antinociceptive action of NMP-181, and also provides a novel avenue for suppressing chronic pain through novel mixed T-type/cannabinoid receptor ligands.


Assuntos
Analgésicos/farmacologia , Canais de Cálcio Tipo T/metabolismo , Carbazóis/farmacologia , Receptor CB2 de Canabinoide/agonistas , Analgésicos/química , Animais , Células CHO , Canais de Cálcio Tipo T/genética , Carbazóis/química , Cricetulus , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Morfolinas , Medição da Dor , Pirazóis , Receptor CB2 de Canabinoide/metabolismo
13.
Mol Brain ; 16(1): 60, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464359

RESUMO

The present study was undertaken to explore the relative contributions of Cav3.2 T-type channels to mediating the antihyperalgesic activity of joint manipulation (JM) therapy. We used the chronic constriction injury model (CCI) to induce peripheral neuropathy and chronic pain in male mice, followed by JM. We demonstrate that JM produces long-lasting mechanical anti-hyperalgesia that is abolished in Cav3.2 null mice. Moreover, we found that JM displays a similar analgesic profile as the fatty acid amide hydrolase inhibitor URB597, suggesting a possible converging mechanism of action involving endocannabinoids. Overall, our findings advance our understanding of the mechanisms through which JM produces analgesia.


Assuntos
Analgesia , Canais de Cálcio Tipo T , Camundongos , Masculino , Animais , Dor , Hiperalgesia/complicações , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canais de Cálcio Tipo T/metabolismo
14.
ACS Chem Neurosci ; 14(10): 1859-1869, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116219

RESUMO

Cav3.2 channels play an important role in the afferent nociceptive pathway, which is responsible for both physiological and pathological pain transmission. Cav3.2 channels are upregulated during neuropathic pain or peripheral inflammation in part due to an increased association with the deubiquitinase USP5. In this study, we investigated nine naturally occurring flavonoid derivatives which we tested for their abilities to inhibit transiently expressed Cav3.2 channels and their interactions with USP5. Icariside II (ICA-II), one of the flavonols studied, inhibited the biochemical interactions between USP5 and Cav3.2 and concomitantly and effectively blocked Cav3.2 channels. Molecular docking analysis predicts that ICA-II binds to the cUBP domain and the Cav3.2 interaction region. In addition, ICA-II was predicted to interact with residues in close proximity to the Cav3.2 channel's fenestrations, thus accounting for the observed blocking activity. In mice with inflammatory and neuropathic pain, ICA-II inhibited both phases of the formalin-induced nocifensive responses and abolished thermal hyperalgesia induced by injection of complete Freund's adjuvant (CFA) into the hind paw. Furthermore, ICA-II produced significant and long-lasting thermal anti-hyperalgesia in female mice, whereas Cav3.2 null mice were resistant to the action of ICA-II. Altogether, our data show that ICA-II has analgesic activity via an action on Cav3.2 channels.


Assuntos
Canais de Cálcio Tipo T , Neuralgia , Feminino , Camundongos , Animais , Canais de Cálcio Tipo T/metabolismo , Simulação de Acoplamento Molecular , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Flavonoides , Flavonóis , Camundongos Knockout , Proteases Específicas de Ubiquitina/metabolismo
15.
Br J Pharmacol ; 180(12): 1616-1633, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36647671

RESUMO

BACKGROUND AND PURPOSE: Cannabinoids are a promising therapeutic avenue for chronic pain. However, clinical trials often fail to report analgesic efficacy of cannabinoids. Inhibition of voltage gate calcium (Cav ) channels is one mechanism through which cannabinoids may produce analgesia. We hypothesized that cannabinoids and cannabinoid receptor agonists target different types of Cav channels through distinct mechanisms. EXPERIMENTAL APPROACH: Electrophysiological recordings from tsA-201 cells expressing either Cav 3.2 or Cav 2.2 were used to assess inhibition by HU-210 or cannabidiol (CBD) in the absence and presence of the CB1 receptor. Homology modelling assessed potential interaction sites for CBD in both Cav 2.2 and Cav 3.2. Analgesic effects of CBD were assessed in mouse models of inflammatory and neuropathic pain. KEY RESULTS: HU-210 (1 µM) inhibited Cav 2.2 function in the presence of CB1 receptor but had no effect on Cav 3.2 regardless of co-expression of CB1 receptor. By contrast, CBD (3 µM) produced no inhibition of Cav 2.2 and instead inhibited Cav 3.2 independently of CB1 receptors. Homology modelling supported these findings, indicating that CBD binds to and occludes the pore of Cav 3.2, but not Cav 2.2. Intrathecal CBD alleviated thermal and mechanical hypersensitivity in both male and female mice, and this effect was absent in Cav 3.2 null mice. CONCLUSION AND IMPLICATIONS: Our findings reveal differential modulation of Cav 2.2 and Cav 3.2 channels by CB1 receptors and CBD. This advances our understanding of how different cannabinoids produce analgesia through action at different voltage-gated calcium channels and could influence the development of novel cannabinoid-based therapeutics for treatment of chronic pain.


Assuntos
Canabidiol , Canabinoides , Dor Crônica , Masculino , Feminino , Camundongos , Animais , Canabidiol/farmacologia , Canais de Cálcio , Dor Crônica/tratamento farmacológico , Analgésicos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
16.
Front Integr Neurosci ; 17: 1242278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901799

RESUMO

Objective: This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) associated with physical exercise, i.e., swimming, in mice with peripheral inflammation. Methods: The pain model was induced by intraplantar (i.pl.) injection of Freund's complete adjuvant (CFA). Sixty-four male Swiss mice (35-40 g) received an i.pl. of CFA and underwent behavioral tests, i.e., mechanical hyperalgesia, edema, and paw temperature tests. Additionally, cytokine levels, specifically interleukin-6 (IL-6) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay. Mice were treated with swimming exercise for 30 min alone or associated with different time protocols (10, 20, or 30 min) of stimulation in the left ear with random frequency during four consecutive days. Results: pVNS for 20 min prolonged the antihyperalgesic effect for up to 2 h, 24 h after CFA injection. pVNS for 30 min prolonged the antihyperalgesic effect for up to 7 h, 96 h after CFA injection. However, it did not alter the edema or temperature at both analyzed times (24 and 96 h). Furthermore, the combination of pVNS plus swimming exercise, but not swimming exercise alone, reduced IL-6 levels in the paw and spinal cord, as well as IL-10 levels in the spinal cord. Conclusion: pVNS potentiates the analgesic effect induced by swimming, which may be, at least in part, mediated by the modulation of inflammatory cytokines in the periphery (paw) and central nervous system (spinal cord). Therefore, the combination of these therapies may serve as an important adjunctive treatment for persistent inflammatory pain.

17.
Pain Med ; 13(8): 1049-58, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22776137

RESUMO

OBJECTIVE: Investigate whether ankle joint mobilization (AJM) decreases hypersensitivity in the mouse plantar incision (PI) model of postoperative pain as well as to analyze the possible mechanisms involved in this effect. DESIGN: Experiment 1: PI male Swiss mice (25-35 g, N = eight animals per group) were subjected to five sessions of AJM, each lasting either 9 or 3 minutes. AJM movement was applied at a grade III as defined by Maitland. Paw withdrawal frequency to mechanical stimuli was assessed before realization of PI and before and after daily AJM sessions. Mechanical hypersensitivity was also assessed following systemic (intraperitoneal [i.p.]) and local (intraplantar) injection of naloxone (a nonselective opioid receptor antagonist; 1 mg/kg, i.p.; 5 µg/paw, respectively, experiment 2); and systemic injection of fucoidin (100 µg/mouse, i.p., an inhibitor of leukocyte rolling, experiment 3) in different groups of mice. RESULTS: Nine but not 3 minutes of AJM reduced mechanical hypersensitivity caused by PI, an effect that was prevented by systemic and local administrations of naloxone but not by fucoidin. CONCLUSIONS: Our results indicate that joint mobilization reduces postoperative pain by activation of the peripheral opioid pathway. However, antihypersensitivity induced by AJM is apparently not limited by the number of opioid-containing leukocytes but by opioid receptors availability in sensory neurons. A better understanding of the peripheral mechanisms of AJM could stimulate therapists to integrate joint mobilization with strategies also known to influence endogenous pain control, such as exercise, acupuncture, and transcutaneous electrical nerve stimulation to potentiate endogenous analgesia.


Assuntos
Articulação do Tornozelo/inervação , Hiperalgesia/terapia , Manipulações Musculoesqueléticas/métodos , Dor Pós-Operatória/terapia , Receptores Opioides/fisiologia , Animais , Articulação do Tornozelo/fisiologia , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/reabilitação , Masculino , Camundongos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/reabilitação
18.
ACS Chem Neurosci ; 13(4): 524-536, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113527

RESUMO

Cav3.2 calcium channels are important mediators of nociceptive signaling in the primary afferent pain pathway, and their expression is increased in various rodent models of chronic pain. Previous work from our laboratory has shown that this is in part mediated by an aberrant expression of deubiquitinase USP5, which associates with these channels and increases their stability. Here, we report on a novel bioactive rhodanine compound (II-1), which was identified in compound library screens. II-1 inhibits biochemical interactions between USP5 and the Cav3.2 domain III-IV linker in a dose-dependent manner, without affecting the enzymatic activity of USP5. Molecular docking analysis reveals two potential binding pockets at the USP5-Cav3.2 interface that are distinct from the binding site of the deubiquitinase inhibitor WP1130 (a.k.a. degrasyn). With an understanding of the ability of some rhodanines to produce false positives in high-throughput screening, we have conducted several orthogonal assays to confirm the validity of this hit, including in vivo experiments. Intrathecal delivery of II-1 inhibited both phases of formalin-induced nocifensive behaviors in mice, as well as abolished thermal hyperalgesia induced by the delivery of complete Freund's adjuvant (CFA) to the hind paw. The latter effects were abolished in Cav3.2 null mice, thus confirming that Cav3.2 is required for the action of II-1. II-1 also mediated a robust inhibition of mechanical allodynia induced by injury to the sciatic nerve. Altogether, our data uncover a novel class of analgesics─well suited to rapid structure-activity relationship studies─that target the Cav3.2/USP5 interface.


Assuntos
Analgésicos , Canais de Cálcio Tipo T , Neuralgia , Proteases Específicas de Ubiquitina , Analgésicos/farmacologia , Animais , Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo T/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Neuralgia/metabolismo , Relação Estrutura-Atividade , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/metabolismo
19.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608912

RESUMO

The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase known for its oncogenic potential that is involved in the development of the peripheral and central nervous system. ALK receptor ligands ALKAL1 and ALKAL2 were recently found to promote neuronal differentiation and survival. Here, we show that inflammation or injury enhanced ALKAL2 expression in a subset of TRPV1+ sensory neurons. Notably, ALKAL2 was particularly enriched in both mouse and human peptidergic nociceptors, yet weakly expressed in nonpeptidergic, large-diameter myelinated neurons or in the brain. Using a coculture expression system, we found that nociceptors exposed to ALKAL2 exhibited heightened excitability and neurite outgrowth. Intraplantar CFA or intrathecal infusion of recombinant ALKAL2 led to ALK phosphorylation in the lumbar dorsal horn of the spinal cord. Finally, depletion of ALKAL2 in dorsal root ganglia or blocking ALK with clinically available compounds crizotinib or lorlatinib reversed thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury, respectively. Overall, our work uncovers the ALKAL2/ALK signaling axis as a central regulator of nociceptor-induced sensitization. We propose that clinically approved ALK inhibitors used for non-small cell lung cancer and neuroblastomas could be repurposed to treat persistent pain conditions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citocinas/metabolismo , Neoplasias Pulmonares , Animais , Humanos , Hiperalgesia/metabolismo , Inflamação/patologia , Ligantes , Camundongos , Dor/tratamento farmacológico , Receptores Proteína Tirosina Quinases , Células Receptoras Sensoriais/metabolismo , Corno Dorsal da Medula Espinal/patologia
20.
Mol Pain ; 7: 59, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21843375

RESUMO

Cellular prion protein (PrPC) inhibits N-Methyl-D-Aspartate (NMDA) receptors. Since NMDA receptors play an important role in the transmission of pain signals in the dorsal horn of spinal cord, we thus wanted to determine if PrPC null mice show a reduced threshold for various pain behaviours.We compared nociceptive thresholds between wild type and PrPC null mice in models of inflammatory and neuropathic pain, in the presence and the absence of a NMDA receptor antagonist. 2-3 months old male PrPC null mice exhibited an MK-801 sensitive decrease in the paw withdrawal threshold in response both mechanical and thermal stimuli. PrPC null mice also exhibited significantly longer licking/biting time during both the first and second phases of formalin-induced inflammation of the paw, which was again prevented by treatment of the mice with MK-801, and responded more strongly to glutamate injection into the paw. Compared to wild type animals, PrPC null mice also exhibited a significantly greater nociceptive response (licking/biting) after intrathecal injection of NMDA. Sciatic nerve ligation resulted in MK-801 sensitive neuropathic pain in wild-type mice, but did not further augment the basal increase in pain behaviour observed in the null mice, suggesting that mice lacking PrPC may already be in a state of tonic central sensitization. Altogether, our data indicate that PrPC exerts a critical role in modulating nociceptive transmission at the spinal cord level, and fit with the concept of NMDA receptor hyperfunction in the absence of PrPC.


Assuntos
Inflamação/complicações , Inflamação/patologia , Neuralgia/complicações , Neuralgia/patologia , Fármacos Neuroprotetores/metabolismo , Príons/metabolismo , Animais , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/administração & dosagem , N-Metilaspartato/farmacologia , Neuralgia/fisiopatologia , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Proteínas Priônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA