Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant J ; 104(6): 1472-1490, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031578

RESUMO

Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-ß-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Hypericum/metabolismo , Proteínas de Plantas/metabolismo , Xantonas/metabolismo , Clonagem Molecular , Coenzima A Ligases/genética , Citosol/enzimologia , Hypericum/enzimologia , Redes e Vias Metabólicas , Simulação de Acoplamento Molecular , Peroxissomos/enzimologia , Filogenia , Proteínas de Plantas/genética
2.
Plant J ; 100(6): 1176-1192, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31437324

RESUMO

Apple (Malus sp.) and other genera belonging to the sub-tribe Malinae of the Rosaceae family produce unique benzoic acid-derived biphenyl phytoalexins. Cell cultures of Malus domestica cv. 'Golden Delicious' accumulate two biphenyl phytoalexins, aucuparin and noraucuparin, in response to the addition of a Venturia inaequalis elicitor (VIE). In this study, we isolated and expressed a cinnamate-CoA ligase (CNL)-encoding sequence from VIE-treated cell cultures of cv. 'Golden Delicious' (M. domestica CNL; MdCNL). MdCNL catalyses the conversion of cinnamic acid into cinnamoyl-CoA, which is subsequently converted to biphenyls. MdCNL failed to accept benzoic acid as a substrate. When scab-resistant (cv. 'Shireen') and moderately scab-susceptible (cv. 'Golden Delicious') apple cultivars were challenged with the V. inaequalis scab fungus, an increase in MdCNL transcript levels was observed in internodal regions. The increase in MdCNL transcript levels could conceivably correlate with the pattern of accumulation of biphenyls. The C-terminal signal in the MdCNL protein directed its N-terminal reporter fusion to peroxisomes in Nicotiana benthamiana leaves. Thus, this report records the cloning and characterisation of a cinnamoyl-CoA-forming enzyme from apple via a series of in vivo and in vitro studies. Defining the key step of phytoalexin formation in apple provides a biotechnological tool for engineering elite cultivars with improved resistance.


Assuntos
Benzoatos/metabolismo , Cinamatos/metabolismo , Ligases/metabolismo , Malus/metabolismo , Sequência de Aminoácidos , Ascomicetos/patogenicidade , Compostos de Bifenilo , Técnicas de Cultura de Células , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ligases/química , Malus/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Doenças das Plantas/microbiologia , Folhas de Planta , Conformação Proteica , Alinhamento de Sequência , Sesquiterpenos , Nicotiana , Fitoalexinas
3.
Plant Cell Rep ; 39(2): 207-215, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31713663

RESUMO

KEY MESSAGE: Benzoate-Coenzyme A ligase enzyme activity catalyzing the conversion of free benzoic acid to benzoyl-CoA was detected and biochemically characterized in the elicitor-treated pear cell cultures. Asian pear (Pyrus pyrifolia) is an economically and nutritionally important fruit-bearing tree of the subtribe Malinae. Upon pathogen attack, pears produce unique benzoate-derived biphenyl phytoalexins. The upstream biosynthesis of the biphenyl in Malinae is still incomplete. Previously, protein preparations from yeast extract-treated pear cultures were able to convert L-phenylalanine to cinnamic acid catalyzed by the activity of the phenylalanine ammonia lyase. The same extract was able to perform a C2 side-chain cleavage of cinnamic acid to benzaldehyde followed by oxidation of the latter to benzoic acid owing to the molecularly-undefined benzaldehyde synthase and benzaldehyde dehydrogenase activities, respectively. The biosynthesis of biphenyls starts with benzoate-Coenzyme A ligase (BZL), which converts benzoic acid to benzoyl-CoA. Subsequently, the previously-defined biphenyl synthase uses benzoyl-CoA to form the biphenyls. The current study reports the first time detection and characterization of BZL activity in elicitor-treated pear cell cultures. The preferred substrate was benzoic acid (Km = 62 ± 4 µM). Magnesium or manganese was prerequisite for the activity, which was enhanced by ~ 70% in the presence of potassium. Maximum BZL activity was observed 18 h post elicitation, which is in agreement with the coordinate induction reported for the enzymes in the same pathway. The induced BZL activity preceded the accumulation of biphenyls supporting its involvement in their biosynthesis.


Assuntos
Compostos de Bifenilo/metabolismo , Coenzima A Ligases/genética , Células Vegetais , Pyrus/citologia , Sesquiterpenos/metabolismo , Acil Coenzima A/metabolismo , Benzaldeídos/metabolismo , Ácido Benzoico/metabolismo , Cinamatos/metabolismo , Coenzima A Ligases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Pyrus/metabolismo , Espectrometria de Massas em Tandem , Fitoalexinas
4.
Planta ; 249(3): 677-691, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30357505

RESUMO

MAIN CONCLUSION: This manuscript describes the cloning and functional characterization of a biphenyl phytoalexin biosynthetic gene, 3,5-dihydroxybiphenyl O-methyltransferase from elicitor-treated cell cultures of scab resistant apple cultivar 'Florina'. Apples belong to the subtribe Malinae of the Rosaceae family. Biphenyls and dibenzofurans are the specialized phytoalexins of Malinae, of which aucuparin is the most widely distributed biphenyl. The precursor of aucuparin, 3,5-dihydroxybiphenyl, is a benzoate-derived polyketide, which is formed by the sequential condensation of three molecules of malonyl-CoA and one molecule of benzoyl-CoA in a reaction catalyzed by biphenyl synthase (BIS). This 3,5-dihydroxybiphenyl then undergoes sequential 5-O-methylation, 4-hydroxylation, and finally 3-O-methylation to form aucuparin. A cDNA encoding O-methyltransferase (OMT) was isolated and functionally characterized from the cell cultures of scab-resistant apple cultivar 'Florina' (Malus domestica cultivar 'Florina'; MdOMT) after treatment with elicitor prepared from the apple scab causing fungus Venturia inaequalis. MdOMT catalyzed the regiospecific O-methylation of 3,5-dihydroxybiphenyl at the 5-position to form 3-hydroxy-5-methoxybiphenyl. The enzyme showed absolute substrate preference for 3,5-dihydroxybiphenyl. The elicitor-treated apple cell cultures showed transient increases in the MdOMT (GenBank ID MF740747) and MdBIS3 (GenBank ID JQ390523) transcript levels followed by the accumulation of biphenyls (aucuparin and noraucuparin) and dibenzofuran (eriobofuran) phytoalexins. MdOMT fused with N- and C-terminal yellow fluorescent protein showed cytoplasmic localization in the epidermis of Nicotiana benthamiana leaves. In scab inoculated greenhouse-grown 'Florina' plants, the expression of MdOMT was transiently induced in the stem followed by the accumulation of biphenyl phytoalexins.


Assuntos
Malus/enzimologia , Metiltransferases/metabolismo , Sesquiterpenos/metabolismo , Células Cultivadas , Clonagem Molecular , Malus/citologia , Malus/genética , Malus/metabolismo , Redes e Vias Metabólicas , Metiltransferases/genética , Metiltransferases/fisiologia , Filogenia , Alinhamento de Sequência , Especificidade por Substrato , Fitoalexinas
5.
New Phytol ; 222(1): 318-334, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30485455

RESUMO

Polyprenylated acylphloroglucinol derivatives, such as xanthones, are natural plant products with interesting pharmacological properties. They are difficult to synthesize chemically. Biotechnological production is desirable but it requires an understanding of the biosynthetic pathways. cDNAs encoding membrane-bound aromatic prenyltransferase (aPT) enzymes from Hypericum sampsonii seedlings (HsPT8px and HsPTpat) and Hypericum calycinum cell cultures (HcPT8px and HcPTpat) were cloned and expressed in Saccharomyces cerevisiae and Nicotiana benthamiana, respectively. Microsomes and chloroplasts were used for functional analysis. The enzymes catalyzed the prenylation of 1,3,6,7-tetrahydroxyxanthone (1367THX) and/or 1,3,6,7-tetrahydroxy-8-prenylxanthone (8PX) and discriminated nine additionally tested acylphloroglucinol derivatives. The transient expression of the two aPT genes preceded the accumulation of the products in elicitor-treated H. calycinum cell cultures. C-terminal yellow fluorescent protein fusions of the two enzymes were localized to the envelope of chloroplasts in N. benthamiana leaves. Based on the kinetic properties of HsPT8px and HsPTpat, the enzymes catalyze sequential rather than parallel addition of two prenyl groups to the carbon atom 8 of 1367THX, yielding gem-diprenylated patulone under loss of aromaticity of the gem-dialkylated ring. Coexpression in yeast significantly increased product formation. The patulone biosynthetic pathway involves multiple subcellular compartments. The aPTs studied here and related enzymes may be promising tools for plant/microbe metabolic pathway engineering.


Assuntos
Dimetilaliltranstransferase/metabolismo , Hypericum/enzimologia , Xantonas/química , Xantonas/metabolismo , Biocatálise , Cloroplastos/metabolismo , Dimetilaliltranstransferase/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Hypericum/genética , Cinética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estereoisomerismo
6.
Physiol Plant ; 167(1): 64-74, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30417393

RESUMO

Cell cultures of Asian pear (Pyrus pyrifolia) are known to produce benzoate-derived biphenyl phytoalexins upon elicitor treatment. Although the downstream pathway for biphenyl phytoalexin biosynthesis is almost known, the upstream route of benzoic acid biosynthesis in pear has not been completely elucidated. In the present work, we report benzaldehyde synthase (BS) activity from yeast extract-treated cell suspension cultures of P. pyrifolia. BS catalyzes the in vitro conversion of trans-cinnamic acid to benzaldehyde using a non-oxidative C2 -side chain cleavage mechanism. The enzyme activity was strictly dependent on the presence of a reducing agent, dithiothreitol being preferred. C2 -side chain shortening of the cinnamic acid backbone resembled the mechanisms catalyzed by 4-hydroxybenzaldehyde synthase (HBS) activity in Vanilla planifolia and salicylaldehyde synthase (SAS) activity in tobacco and apple cell cultures. A basal BS activity was also observed in the non-elicited cell cultures. Upon yeast extract-treatment, a 13-fold increase in BS activity was observed when compared to the non-treated control cells. Moreover, feeding of the cell cultures with trans-cinnamic acid, the substrate for BS, resulted in an enhanced level of noraucuparin, a biphenyl phytoalexin. Comparable accumulation of noraucuparin was observed upon feeding of benzaldehyde, the BS product. The preferred substrate for BS was found to be trans-cinnamic acid, for which the apparent Km and Vmax values were 0.5 mM and 50.7 pkat mg-1 protein, respectively. Our observations indicate the contribution of BS to benzoic acid biosynthesis in Asian pear via the CoA-independent and non-ß-oxidative route.


Assuntos
Benzaldeídos/farmacologia , Cinamatos/farmacologia , Pyrus/metabolismo , Carbono-Carbono Liases/metabolismo , Células Cultivadas , Malus/metabolismo , Pyrus/efeitos dos fármacos , Nicotiana/metabolismo
7.
Planta Med ; 85(7): 591-598, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30513539

RESUMO

The hyperforin content of Hypericum perforatum herb was repeatedly reported to be responsible for a multitude of pharmacological activities. Our recent report about the hyperforin accumulation in in vitro root cultures of H. perforatum provides an alternative perspective to achieve constant product quality and to serve the rapidly growing market. In this study, the antiproliferative effect of a petroleum ether extract from the in vitro root cultures was investigated. When normalized to 1 µM hyperforin content, the extract reduced the viability of human keratinocytes (HaCaT) and human dermal fibroblast monolayers to 33 and 36%, respectively, after 72 h of incubation. A cytotoxicity assay and live-dead cell staining confirmed that the extract lacked a cytotoxic effect and that the reduction in cell viability was mainly due to the antiproliferative activity. Application of the 1 µM hyperforin-normalized extract to a 3D artificial skin construct significantly reduced the proliferation of HaCaT in the presence of fibroblasts. This effect was proved by the reduction in thickness of the epidermal construct from 100 µm (control) to 17 µm (treated). Notably, 1 µM pure hyperforin lacked effectiveness in both monolayer cultures and 3D artificial skin constructs. Nor were fractions of the extract containing colupulone and xanthones active. The combination of these constituents also failed to reassemble the antiproliferative activity, which indicates a synergistic role of yet unidentified components present in the extract. Our findings may introduce H. perforatum root cultures as a novel lead system for the treatment of hypertrophic scars.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Hypericum/química , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Petróleo , Extratos Vegetais/toxicidade , Raízes de Plantas/química
8.
New Phytol ; 217(3): 1099-1112, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29210088

RESUMO

Xanthones are specialized metabolites with antimicrobial properties, which accumulate in roots of Hypericum perforatum. This medicinal plant provides widely taken remedies for depressive episodes and skin disorders. Owing to the array of pharmacological activities, xanthone derivatives attract attention for drug design. Little is known about the sites of biosynthesis and accumulation of xanthones in roots. Xanthone biosynthesis is localized at the transcript, protein, and product levels using in situ mRNA hybridization, indirect immunofluorescence detection, and high lateral and mass resolution mass spectrometry imaging (AP-SMALDI-FT-Orbitrap MSI), respectively. The carbon skeleton of xanthones is formed by benzophenone synthase (BPS), for which a cDNA was cloned from root cultures of H. perforatum var. angustifolium. Both the BPS protein and the BPS transcripts are localized to the exodermis and the endodermis of roots. The xanthone compounds as the BPS products are detected in the same tissues. The exodermis and the endodermis, which are the outermost and innermost cell layers of the root cortex, respectively, are not only highly specialized barriers for controlling the passage of water and solutes but also preformed lines of defence against soilborne pathogens and predators.


Assuntos
Vias Biossintéticas , Hypericum/anatomia & histologia , Hypericum/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Xantonas/metabolismo , Acil Coenzima A/metabolismo , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Xantonas/química
9.
Plant J ; 83(2): 263-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26017378

RESUMO

Biphenyls and dibenzofurans are the phytoalexins of the Malinae involving apple and pear. Biosynthesis of the defence compounds includes two O-methylation reactions. cDNAs encoding the O-methyltransferase (OMT) enzymes were isolated from rowan (Sorbus aucuparia) cell cultures after treatment with an elicitor preparation from the scab-causing fungus, Venturia inaequalis. The preferred substrate for SaOMT1 was 3,5-dihydroxybiphenyl, supplied by the first pathway-specific enzyme, biphenyl synthase (BIS). 3,5-Dihydroxybiphenyl underwent a single methylation reaction in the presence of S-adenosyl-l-methionine (SAM). The second enzyme, SaOMT2, exhibited its highest affinity for noraucuparin, however the turnover rate was greater with 5-hydroxyferulic acid. Both substrates were only methylated at the meta-positioned hydroxyl group. The substrate specificities of the OMTs and the regiospecificities of their reactions were rationalized by homology modeling and substrate docking. Interaction of the substrates with SAM also took place at a position other than the sulfur group. Expression of SaOMT1, SaOMT2 and SaBIS3 was transiently induced in rowan cell cultures by the addition of the fungal elicitor. While the immediate SaOMT1 products were not detectable in elicitor-treated cell cultures, noraucuparin and noreriobofuran accumulated transiently, followed by increasing levels of the SaOMT2 products aucuparin and eriobofuran. SaOMT1, SaOMT2 and SaBIS3 were N- and C-terminally fused with the super cyan fluorescent protein and a modified yellow fluorescent protein, respectively. All the fluorescent reporter fusions were localized to the cytoplasm of Nicotiana benthamiana leaf epidermis cells. A revised biosynthetic pathway of biphenyls and dibenzofurans in the Malinae is presented.


Assuntos
Benzofuranos/metabolismo , Compostos de Bifenilo/metabolismo , Proteína O-Metiltransferase/metabolismo , Sequência de Aminoácidos , Malus , Dados de Sequência Molecular , Proteína O-Metiltransferase/química , Proteína O-Metiltransferase/genética , Pyrus , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
Plant Physiol ; 168(2): 428-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862456

RESUMO

Upon pathogen attack, fruit trees such as apple (Malus spp.) and pear (Pyrus spp.) accumulate biphenyl and dibenzofuran phytoalexins, with aucuparin as a major biphenyl compound. 4-Hydroxylation of the biphenyl scaffold, formed by biphenyl synthase (BIS), is catalyzed by a cytochrome P450 (CYP). The biphenyl 4-hydroxylase (B4H) coding sequence of rowan (Sorbus aucuparia) was isolated and functionally expressed in yeast (Saccharomyces cerevisiae). SaB4H was named CYP736A107. No catalytic function of CYP736 was known previously. SaB4H exhibited absolute specificity for 3-hydroxy-5-methoxybiphenyl. In rowan cell cultures treated with elicitor from the scab fungus, transient increases in the SaB4H, SaBIS, and phenylalanine ammonia lyase transcript levels preceded phytoalexin accumulation. Transient expression of a carboxyl-terminal reporter gene construct directed SaB4H to the endoplasmic reticulum. A construct lacking the amino-terminal leader and transmembrane domain caused cytoplasmic localization. Functional B4H coding sequences were also isolated from two apple (Malus × domestica) cultivars. The MdB4Hs were named CYP736A163. When stems of cv Golden Delicious were infected with the fire blight bacterium, highest MdB4H transcript levels were observed in the transition zone. In a phylogenetic tree, the three B4Hs were closest to coniferaldehyde 5-hydroxylases involved in lignin biosynthesis, suggesting a common ancestor. Coniferaldehyde and related compounds were not converted by SaB4H.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Malus/enzimologia , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Sorbus/enzimologia , Sequência de Aminoácidos , Hidrocarboneto de Aril Hidroxilases/química , Células Cultivadas , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , DNA Complementar/genética , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Cinética , Malus/genética , Malus/microbiologia , Microssomos/metabolismo , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sesquiterpenos/química , Sorbus/genética , Frações Subcelulares/enzimologia , Especificidade por Substrato , Nicotiana/metabolismo , Fitoalexinas
11.
Molecules ; 20(9): 15616-30, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26343621

RESUMO

In plants, prenylation of metabolites is widely distributed to generate compounds with efficient defense potential and distinct pharmacological activities profitable to human health. Prenylated compounds are formed by members of the prenyltransferase (PT) superfamily, which catalyze the addition of prenyl moieties to a variety of acceptor molecules. Cell cultures of Hypericum calycinum respond to elicitor treatment with the accumulation of the prenylated xanthone hyperxanthone E. A cDNA encoding a membrane-bound PT (HcPT) was isolated from a subtracted cDNA library and transcript preparations of H. calycinum. An increase in the HcPT transcript level preceded hyperxanthone E accumulation in cell cultures of H. calycinum treated with elicitor. The HcPT cDNA was functionally characterized by expression in baculovirus-infected insect cells. The recombinant enzyme catalyzed biosynthesis of 1,3,6,7-tetrahydroxy-8-prenylxanthone through regiospecific C-8 prenylation of 1,3,6,7-tetrahydroxyxanthone, indicating its involvement in hyperxanthone E formation. The enzymatic product shared significant structural features with the previously reported cholinesterase inhibitor γ-mangostin. Thus, our findings may offer a chance for semisynthesis of new active agents to be involved in the treatment of Alzheimer's disease.


Assuntos
Clonagem Molecular/métodos , Dimetilaliltranstransferase/genética , Hypericum/enzimologia , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Biblioteca Gênica , Hypericum/genética , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xantonas/metabolismo
12.
J Fungi (Basel) ; 10(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921423

RESUMO

Studying the fates of oil components and their interactions with ecological systems is essential for developing comprehensive management strategies and enhancing restoration following oil spill incidents. The potential expansion of Kazakhstan's role in the global oil market necessitates the existence of land-specific studies that contribute to the field of bioremediation. In this study, a set of experiments was designed to assess the growth and biodegradation capacities of eight fungal strains sourced from Kazakhstan soil when exposed to the hydrocarbon substrates from which they were initially isolated. The strains were identified as Aspergillus sp. SBUG-M1743, Penicillium javanicum SBUG-M1744, SBUG-M1770, Trichoderma harzianum SBUG-M1750 and Fusarium oxysporum SBUG-1746, SBUG-M1748, SBUG-M1768 and SBUG-M1769 using the internal transcribed spacer (ITS) region. Furthermore, microscopic and macroscopic evaluations agreed with the sequence-based identification. Aspergillus sp. SBUG-M1743 and P. javanicum SBUG-M1744 displayed remarkable biodegradation capabilities in the presence of tetradecane with up to a 9-fold biomass increase in the static cultures. T. harzianum SBUG-M1750 exhibited poor growth, which was a consequence of its low efficiency of tetradecane degradation. Monocarboxylic acids were the main degradation products by SBUG-M1743, SBUG-M1744, SBUG-M1750, and SBUG-M1770 indicating the monoterminal degradation pathway through ß-oxidation, while the additional detection of dicarboxylic acid in SBUG-M1768 and SBUG-M1769 cultures was indicative of the fungus' ability to undertake both monoterminal and diterminal degradation pathways. F. oxysporum SBUG-M1746 and SBUG-M1748 in the presence of cyclohexanone showed a doubling of the biomass with the ability to degrade the substrate almost completely in shake cultures. F. oxysporum SBUG-M1746 was also able to degrade cyclohexane completely and excreted all possible metabolites of the degradation pathway. Understanding the degradation potential of these fungal isolates to different hydrocarbon substrates will help in developing effective bioremediation strategies tailored to local conditions.

13.
Plant Physiol ; 158(2): 864-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22158676

RESUMO

Fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple (Malus × domestica). The phytoalexins of apple are biphenyls and dibenzofurans, whose carbon skeleton is formed by biphenyl synthase (BIS), a type III polyketide synthase. In the recently published genome sequence of apple 'Golden Delicious', nine BIS genes and four BIS gene fragments were detected. The nine genes fall into four subfamilies, referred to as MdBIS1 to MdBIS4. In a phylogenetic tree, the BIS amino acid sequences from apple and Sorbus aucuparia formed an individual cluster within the clade of the functionally diverse type III polyketide synthases. cDNAs encoding MdBIS1 to MdBIS4 were cloned from fire-blight-infected shoots of apple 'Holsteiner Cox,' heterologously expressed in Escherichia coli, and functionally analyzed. Benzoyl-coenzyme A and salicoyl-coenzyme A were the preferred starter substrates. In response to inoculation with E. amylovora, the BIS3 gene was expressed in stems of cv Holsteiner Cox, with highest transcript levels in the transition zone between necrotic and healthy tissues. The transition zone was the accumulation site of biphenyl and dibenzofuran phytoalexins. Leaves contained transcripts for BIS2 but failed to form immunodetectable amounts of BIS protein. In cell cultures of apple 'Cox Orange,' expression of the BIS1 to BIS3 genes was observed after the addition of an autoclaved E. amylovora suspension. Using immunofluorescence localization under a confocal laser-scanning microscope, the BIS3 protein in the transition zone of stems was detected in the parenchyma of the bark. Dot-shaped immunofluorescence was confined to the junctions between neighboring cortical parenchyma cells.


Assuntos
Genes de Plantas , Malus/genética , Complexos Multienzimáticos/genética , Clonagem Molecular , DNA Complementar , Escherichia coli/genética , Imuno-Histoquímica , Malus/enzimologia , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/genética
14.
Plant Physiol ; 160(3): 1267-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22992510

RESUMO

Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg²âº and K⁺ at optimum concentrations of 2.5 and 100 mM, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages.


Assuntos
Benzoatos/metabolismo , Cinamatos/metabolismo , Coenzima A Ligases/metabolismo , Hypericum/citologia , Hypericum/enzimologia , Sesquiterpenos/metabolismo , Xantonas/metabolismo , Sequência de Aminoácidos , Benzoatos/química , Cátions , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Coenzima A Ligases/química , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Hypericum/genética , Cinética , Dados de Sequência Molecular , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Transporte Proteico , Alinhamento de Sequência , Sesquiterpenos/química , Espectrometria de Massas por Ionização por Electrospray , Frações Subcelulares/enzimologia , Especificidade por Substrato , Xantonas/química , Fitoalexinas
15.
Microorganisms ; 11(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37512906

RESUMO

The development of novel drugs is a complex process that requires cost-effective and sustainable techniques [...].

16.
Microorganisms ; 11(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37764039

RESUMO

For decades, researchers have focused on containing terrestrial oil pollution. The heterogeneity of soils, with immense microbial diversity, inspires them to transform pollutants and find cost-effective bioremediation methods. In this study, the mycoremediation potentials of five filamentous fungi isolated from polluted soils in Kazakhstan were investigated for their degradability of n-alkanes and branched-chain alkanes as sole carbon and energy sources. Dry weight estimation and gas chromatography-mass spectrometry (GC-MS) monitored the growth and the changes in the metabolic profile during degradation, respectively. Penicillium javanicum SBUG-M1741 and SBUG-M1742 oxidized medium-chain alkanes almost completely through mono- and di-terminal degradation. Pristane degradation by P. javanicum SBUG-M1741 was >95%, while its degradation with Purpureocillium lilacinum SBUG-M1751 was >90%. P. lilacinum SBUG-M1751 also exhibited the visible degradation potential of tetradecane and phytane, whereby in the transformation of phytane, both the mono- and di-terminal degradation pathways as well as α- and ß-oxidation steps could be described. Scedosporium boydii SBUG-M1749 used both mono- and di-terminal degradation pathways for n-alkanes, but with poor growth. Degradation of pristane by Fusarium oxysporum SBUG-M1747 followed the di-terminal oxidation mechanism, resulting in one dicarboxylic acid. These findings highlight the role of filamentous fungi in containing oil pollution and suggest possible degradation pathways.

17.
Plant Physiol Biochem ; 160: 82-93, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33482582

RESUMO

Benzoic acid is a building block of a multitude of well-known plant natural products, such as paclitaxel and cocaine. Its simple chemical structure contrasts with its complex biosynthesis. Hypericum species are rich in polyprenylated benzoic acid-derived xanthones, which have received attention due to their biological impact on human health. The upstream biosynthetic sequence leading to xanthones is still incomplete. To supply benzoic acid for xanthone biosynthesis, Hypericum calycinum cell cultures use the CoA-dependent non-ß-oxidative pathway, which starts with peroxisomal cinnamate CoA-ligase (HcCNL). Here, we use the xanthone-producing cell cultures to identify the transcript for benzaldehyde dehydrogenase (HcBD), a pivotal player in the non-ß-oxidative pathways. In addition to benzaldehyde, the enzyme efficiently catalyzes the oxidation of trans-cinnamaldehyde in vitro. The enzymatic activity is strictly dependent on the presence of NAD+ as co-factor. HcBD is localized to the cytosol upon ectopic expression of reporter fusion constructs. HcBD oxidizes benzaldehyde, which moves across the peroxisome membrane, to form benzoic acid. Increases in the HcCNL and HcBD transcript levels precede the elicitor-induced xanthone accumulation. The current work addresses a crucial step in the yet incompletely understood CoA-dependent non-ß-oxidative route of benzoic acid biosynthesis. Addressing this step may offer a new biotechnological tool to enhance product formation in biofactories.


Assuntos
Aldeído Oxirredutases/metabolismo , Ácido Benzoico/metabolismo , Hypericum/enzimologia , Proteínas de Plantas/metabolismo , Xantonas/metabolismo
18.
Eng Life Sci ; 19(12): 916-930, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32624982

RESUMO

During the past decades, several trials targeted a stable, sustainable and economic production of St. John's wort (Hypericum perforatum) extract. The value of this extract stems from its use to treat depression and skin irritation due to its hyperforin content. Previously, hyperforin-forming in vitro root cultures were established. Here, detailed growth and production kinetics have been analyzed over 40 days of cultivation. In the first 10 days, sucrose was completely hydrolyzed to glucose and fructose. The ammonium consumption supported the increase in the biomass and hyperforin production. When sucrose was replaced with glucose/fructose, the linear growth phase started 6 days earlier and resulted in a higher space-time-yield. The maximum hyperforin production was 0.82 mg L-1 day-1, which was 67 % higher than in the sucrose-supplemented standard cultivation. Buffering the sucrose-supplemented medium with phosphate caused a 2.7-fold increase in the product to biomass yield coefficient. However, the combination of monosaccharides and buffering conditions did not cause an appreciable improvements in the production performance of the shake flask approaches. A potential scalability from flask to lab-scale stirred bioreactors has been demonstrated. The results obtained offer a basis for a scalable production of hyperforin and a sustainable source for a tissue culture-based phytomedicine.

20.
Eur J Pharm Biopharm ; 126: 104-107, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28669795

RESUMO

Hyperforin is a major metabolite of the medicinal plant Hypericum perforatum (St. John's Wort) and has recently been found in hormone induced root cultures. The objective of this study is to identify a downstream process for the production of a hyperforin-rich extract with maximum extraction efficiency and minimal decomposition. The maximum extraction time was found to be 60min. The comparison of two equipment concepts for the extraction and solvent evaporation was performed employing two different solvents. While the rotary mixer showed better results for the extraction efficiency than a stirred vessel, the latter set-up was able to handle larger volumes but did not meet all process requirements. For the evaporation the prompt evaporation of the extraction agent using nitrogen stripping led to minor decomposition. In a 5L stirred vessel, the highest specific extraction of hyperforin was 4.3mg hyperforin/g dry weight bio material. Parameters for the equipment design for extraction and solvent evaporation were determined based on the experimental data.


Assuntos
Química Farmacêutica/métodos , Hypericum , Floroglucinol/análogos & derivados , Extratos Vegetais/síntese química , Raízes de Plantas , Terpenos/síntese química , Cromatografia Líquida de Alta Pressão/métodos , Floroglucinol/análise , Floroglucinol/síntese química , Floroglucinol/isolamento & purificação , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Terpenos/análise , Terpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA