Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(6): 1530-1544, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495084

RESUMO

Climate warming is leading to permafrost thaw in northern peatlands, and current predictions suggest that thawing will drive greater surface wetness and an increase in methane emissions. Hydrology largely drives peatland vegetation composition, which is a key element in peatland functioning and thus in carbon dynamics. These processes are expected to change. Peatland carbon accumulation is determined by the balance between plant production and peat decomposition. But both processes are expected to accelerate in northern peatlands due to warming, leading to uncertainty in future peatland carbon budgets. Here, we compile a dataset of vegetation changes and apparent carbon accumulation data reconstructed from 33 peat cores collected from 16 sub-arctic peatlands in Fennoscandia and European Russia. The data cover the past two millennia that has undergone prominent changes in climate and a notable increase in annual temperatures toward present times. We show a pattern where European sub-Arctic peatland microhabitats have undergone a habitat change where currently drier habitats dominated by Sphagnum mosses replaced wetter sedge-dominated vegetation and these new habitats have remained relatively stable over the recent decades. Our results suggest an alternative future pathway where sub-arctic peatlands may at least partly sustain dry vegetation and enhance the carbon sink capacity of northern peatlands.


Assuntos
Sequestro de Carbono , Sphagnopsida , Ecossistema , Solo , Carbono
2.
Ecol Lett ; 25(1): 17-25, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34708510

RESUMO

The salinisation of many coastal ecosystems is underway and is expected to continue into the future because of sea-level rise and storm intensification brought about by the changing climate. However, the response of soil microbes to increasing salinity conditions within coastal environments is poorly understood, despite their importance for nutrient cascading, carbon sequestration and wider ecosystem functioning. Here, we demonstrate deterioration in the productivity of a top-tier microbial group (testate amoebae) with increasing coastal salinity, which we show to be consistent across phylogenetic groups, salinity gradients, environment types and latitude. Our results show that microbial changes occur in the very early stages of marine inundation, presaging more radical changes in soil and ecosystem function and providing an early warning of coastal salinisation that could be used to improve coastal planning and adaptation.


Assuntos
Ecossistema , Salinidade , Sequestro de Carbono , Mudança Climática , Filogenia , Solo , Áreas Alagadas
3.
Microb Ecol ; 78(2): 534-538, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30535652

RESUMO

Unicellular free-living microbial eukaryotes of the order Arcellinida (Tubulinea; Amoebozoa) and Euglyphida (Cercozoa; SAR), commonly termed testate amoebae, colonise almost every freshwater ecosystem on Earth. Patterns in the distribution and productivity of these organisms are strongly linked to abiotic conditions-particularly moisture availability and temperature-however, the ecological impacts of changes in salinity remain poorly documented. Here, we examine how variable salt concentrations affect a natural community of Arcellinida and Euglyphida on a freshwater sub-Antarctic peatland. We principally report that deposition of wind-blown oceanic salt-spray aerosols onto the peatland surface corresponds to a strong reduction in biomass and to an alteration in the taxonomic composition of communities in favour of generalist taxa. Our results suggest novel applications of this response as a sensitive tool to monitor salinisation of coastal soils and to detect salinity changes within peatland palaeoclimate archives. Specifically, we suggest that these relationships could be used to reconstruct millennial scale variability in salt-spray deposition-a proxy for changes in wind-conditions-from sub-fossil communities of Arcellinida and Euglyphida preserved in exposed coastal peatlands.


Assuntos
Cercozoários/crescimento & desenvolvimento , Lobosea/crescimento & desenvolvimento , Regiões Antárticas , Biodiversidade , Cercozoários/metabolismo , Ecossistema , Lobosea/metabolismo , Salinidade , Cloreto de Sódio/análise , Cloreto de Sódio/metabolismo , Solo/química , Solo/parasitologia
4.
Glob Chang Biol ; 24(2): 738-757, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29055083

RESUMO

The most carbon (C)-dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long-term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6-6.1 and ca. 4.9-3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland-forest swamp-peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8-1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts.


Assuntos
Carbono/química , Solo , Áreas Alagadas , Secas , Peru , Rios , Fatores de Tempo
5.
Microb Ecol ; 68(2): 284-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24691848

RESUMO

Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r(2)(apparent)= 0.76, RMSE = 4.29; r(2)(jack)= 0.68, RMSEP =5.18). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.


Assuntos
Amoeba/crescimento & desenvolvimento , Sphagnopsida/microbiologia , Microbiologia da Água , Áreas Alagadas , Amoeba/classificação , Amoeba/isolamento & purificação , Monitoramento Ambiental , Água Subterrânea , Hidrologia , Modelos Teóricos , Peru , Dinâmica Populacional , Solo
6.
Sci Rep ; 13(1): 14811, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684329

RESUMO

The Tibetan Plateau (TP) hosts a variety of mountain peatlands that are sensitive to the amplified warming in this region. However, we still lack a basic understanding of environmental and climatic factors controlling peatland distribution in the region. Here we use a bioclimatic envelope model (PeatStash) and environmental analysis that utilise three peatland datasets-(a) the well-studied Zoige peatland complex, (b) a literature-based dataset of TP peatlands sites, and (c) an existing global peatland map (PEATMAP)-to investigate major drivers of peatland distribution in the TP. The Zoige peatland complex is defined by gentle slopes (< 2°), mean annual temperature at 0-2 °C, and soil moisture index > 1.7, much narrower thresholds than those stemming from PEATMAP. Using these narrower thresholds to predict future changes, we found that the Zoige peatland complex will shrink greatly under full-range future warming scenarios (both SSP1-2.6 and SSP5-8.5). Modelling peatland distribution in the entire TP remains challenging because accurate environmental and climate data at high resolution and a reliable peatland distribution map are still lacking. Improved peatland mapping supported by ground-truthing is necessary to understand drivers of peatland distribution, assess carbon storage and other ecosystem services, and predict the TP's peatlands fate under climate change.

7.
Sci Total Environ ; 838(Pt 3): 156419, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35662594

RESUMO

Changes in plant cover and productivity are important in driving Arctic soil carbon dynamics and sequestration, especially in peatlands. Warming trends in the Arctic are known to have resulted in changes in plant productivity, extent and community composition, but more data are still needed to improve understanding of the complex controls and processes involved. Here we assess plant productivity response to climate variability between 1985 and 2020 by comparing peak growing season NDVI (Normalised Difference Vegetation Index data from Landsat 5 and 7), to seasonal-average weather data (temperature, precipitation and snow-melt timing) in nine locations containing peatlands in high- and low-Arctic regions in Europe and Canada. We find that spring (correlation 0.36 for peat dominant and 0.39 for mosaic; MLR coefficient 0.20 for peat, 0.29 for mosaic), summer (0.47, 0.42; 0.18, 0.17) and preceding-autumn (0.35, 0.25; 0.33, 0.27) temperature are linked to peak growing season NDVI at our sites between 1985 and 2020, whilst spring snow melt timing (0.42, 0.45; 0.25, 0.32) is also important, and growing season water availability is likely site-specific. According to regression trees, a warm preceding autumn (September-October-November) is more important than a warm summer (June-July-August) in predicting the highest peak season productivity in the peat-dominated areas. Mechanisms linked to soil processes may explain the importance of previous-Autumn conditions on productivity. We further find that peak productivity increases in these Arctic peatlands are comparable to those in the surrounding non-peatland-dominant vegetation. Increased productivity in and around Arctic peatlands suggests a potential to increased soil carbon sequestration with future warming, but further work is needed to test whether this is evident in observations of recent peat accumulation and extent.


Assuntos
Clima , Neve , Regiões Árticas , Mudança Climática , Ecossistema , Plantas , Estações do Ano , Solo
8.
Sci Rep ; 11(1): 9547, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953225

RESUMO

The carbon (C) accumulation histories of peatlands are of great interest to scientists, land users and policy makers. Because peatlands contain more than 500 billion tonnes of C, an understanding of the fate of this dynamic store, when subjected to the pressures of land use or climate change, is an important part of climate-change mitigation strategies. Information from peat cores is often used to recreate a peatland's C accumulation history from recent decades to past millennia, so that comparisons between past and current rates can be made. However, these present day observations of peatlands' past C accumulation rates (known as the apparent rate of C accumulation - aCAR) are usually different from the actual uptake or loss of C that occurred at the time (the true C balance). Here we use a simple peatland model and a more detailed ecosystem model to illustrate why aCAR should not be used to compare past and current C accumulation rates. Instead, we propose that data from peat cores are used with existing or new C balance models to produce reliable estimates of how peatland C function has changed over time.

9.
Sci Adv ; 7(23)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34088663

RESUMO

When a peatland is drained and cultivated, it behaves as a notable source of CO2 However, we lack temporally and spatially explicit estimates of carbon losses from cultivated peatlands. Using a process-based land surface model that explicitly includes representation of peatland processes, we estimate that northern peatlands converted to croplands emitted 72 Pg C over 850-2010, with 45% of this source having occurred before 1750. This source surpassed the carbon accumulation by high-latitude undisturbed peatlands (36 to 47 Pg C). Carbon losses from the cultivation of northern peatlands are omitted in previous land-use emission assessments. Adding this ignored historical land-use emission implies an 18% larger terrestrial carbon storage since 1750 to close the historical global carbon budget. We also show that carbon emission per unit area decrease with time since drainage, suggesting that time since drainage should be accounted for in inventories to refine land-use emissions from cultivated peatlands.

10.
Sci Total Environ ; 759: 143467, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33199011

RESUMO

Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.


Assuntos
Ecossistema , Incêndios , Carbono , Ciclo do Carbono , Solo , Áreas Alagadas
11.
Sci Rep ; 10(1): 2230, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041975

RESUMO

The recent expansion of oil palm (OP, Elaeis guineensis) plantations into tropical forest peatlands has resulted in ecosystem carbon emissions. However, estimates of net carbon flux from biomass changes require accurate estimates of the above ground biomass (AGB) accumulation rate of OP on peat. We quantify the AGB stocks of an OP plantation on drained peat in Malaysia from 3 to 12 years after planting using destructive harvests supported by non-destructive surveys of a further 902 palms. Peat specific allometric equations for palm (R2 = 0.92) and frond biomass are developed and contrasted to existing allometries for OP on mineral soils. Allometries are used to upscale AGB estimates to the plantation block-level. Aboveground biomass stocks on peat accumulated at ~6.39 ± 1.12 Mg ha-1 per year in the first 12 years after planting, increasing to ~7.99 ± 0.95 Mg ha-1 yr-1 when a 'perfect' plantation was modelled. High inter-palm and inter-block AGB variability was observed in mature classes as a result of variations in palm leaning and mortality. Validation of the allometries defined and expansion of non-destructive inventories across alternative plantations and age classes on peat would further strengthen our understanding of peat OP AGB accumulation rates.


Assuntos
Arecaceae/metabolismo , Biomassa , Ciclo do Carbono , Carbono/metabolismo , Solo/química , Agricultura , Carbono/análise , Monitorização de Parâmetros Ecológicos/métodos , Malásia , Floresta Úmida , Árvores
12.
Sci Rep ; 9(1): 17939, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784556

RESUMO

Peatlands are globally important stores of carbon (C) that contain a record of how their rates of C accumulation have changed over time. Recently, near-surface peat has been used to assess the effect of current land use practices on C accumulation rates in peatlands. However, the notion that accumulation rates in recently formed peat can be compared to those from older, deeper, peat is mistaken - continued decomposition means that the majority of newly added material will not become part of the long-term C store. Palaeoecologists have known for some time that high apparent C accumulation rates in recently formed peat are an artefact and take steps to account for it. Here we show, using a model, how the artefact arises. We also demonstrate that increased C accumulation rates in near-surface peat cannot be used to infer that a peatland as a whole is accumulating more C - in fact the reverse can be true because deep peat can be modified by events hundreds of years after it was formed. Our findings highlight that care is needed when evaluating recent C addition to peatlands especially because these interpretations could be wrongly used to inform land use policy and decisions.

13.
Sci Rep ; 6: 28758, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27354088

RESUMO

Freshwater peatlands are carbon accumulating ecosystems where primary production exceeds organic matter decomposition rates in the soil, and therefore perform an important sink function in global carbon cycling. Typical peatland plant and microbial communities are adapted to the waterlogged, often acidic and low nutrient conditions that characterise them. Peatlands in coastal locations receive inputs of oceanic base cations that shift conditions from the environmental optimum of these communities altering the carbon balance. Blanket bogs are one such type of peatlands occurring in hyperoceanic regions. Using a blanket bog to coastal marsh transect in Northwest Scotland we assess the impacts of salt intrusion on carbon accumulation rates. A threshold concentration of salt input, caused by inundation, exists corresponding to rapid acidophilic to halophilic plant community change and a carbon accumulation decline. For the first time, we map areas of blanket bog vulnerable to sea-level rise, estimating that this equates to ~7.4% of the total extent and a 0.22 Tg yr(-1) carbon sink. Globally, tropical peatlands face the proportionally greatest risk with ~61,000 km(2) (~16.6% of total) lying ≤5 m elevation. In total an estimated 20.2 ± 2.5 GtC is stored in peatlands ≤5 m above sea level, which are potentially vulnerable to inundation.

14.
Sci Rep ; 5: 17951, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26647837

RESUMO

Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA