Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(18): e202301815, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36852584

RESUMO

Graphitic carbon nitride (g-CN) is a transition metal free semiconductor that mediates a variety of photocatalytic reactions. Although photoinduced electron transfer is often postulated in the mechanism, proton-coupled electron transfer (PCET) is a more favorable pathway for substrates possessing X-H bonds. Upon excitation of an (sp2 )N-rich structure of g-CN with visible light, it behaves as a photobase-it undergoes reductive quenching accompanied by abstraction of a proton from a substrate. The results of modeling allowed us to identify active sites for PCET-the 'triangular pockets' on the edge facets of g-CN. We employ excited state PCET from the substrate to g-CN to selectively cleavethe endo-(sp3 )C-H bond in oxazolidine-2-ones followed by trapping the radical with O2 . This reaction affords 1,3-oxazolidine-2,4-diones. Measurement of the apparent pKa value and modeling suggest that g-CN excited state can cleave X-H bonds that are characterized by bond dissociation free energy (BDFE) ≈100 kcal mol-1 .

2.
J Colloid Interface Sci ; 678(Pt B): 518-533, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39260300

RESUMO

Visible-light responsive, stable, and abundant absorbers are required for the rapid integration of green, clean, and renewable technologies in a circular economy. Photoactive solid-solid heterojunctions enable multiple charge pathways, inhibiting recombination through efficient charge transfer across the interface. This study spotlights the physico-chemical synergy between titanium dioxide (TiO2) anatase and carbon nitride (CN) to form a hybrid material. The CN(10%)-TiO2(90%) hybrid outperforms TiO2 and CN references and literature homologs in four photo and photoelectrocatalytic reactions. CN-TiO2 achieved a four-fold increase in benzylamine conversion, with photooxidation conversion rates of 51, 97, and 100 % at 625, 535, and 465 nm, respectively. The associated energy transfer mechanism was elucidated. In photoelectrochemistry, CN-TiO2 exhibited 23 % photoactivity of the full-spectrum measurement when using a 410 nm filter. Our findings demonstrate that CN-TiO2 displayed a band gap of 2.9 eV, evidencing TiO2 photosensitization attributed to enhanced charge transfer at the heterointerface boundaries via staggered heterojunction type II.

3.
Energy Fuels ; 36(9): 4625-4639, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558990

RESUMO

With photovoltaics becoming a mature, commercially feasible technology, society is willing to allocate resources for developing and deploying new technologies based on using solar light. Analysis of projects supported by the European Commission in the past decade indicates exponential growth of funding to photocatalytic (PC) and photoelectrocatalytic (PEC) technologies that aim either at technology readiness levels (TRLs) TRL 1-3 or TRL > 3, with more than 75 Mio€ allocated from the year 2019 onward. This review provides a summary of PC and PEC processes for the synthesis of bulk commodities such as solvents and fuels, as well as chemicals for niche applications. An overview of photoreactors for photocatalysis on a larger scale is provided. The review rounds off with the summary of reactions performed at lab scale under natural outdoor solar light to illustrate conceptual opportunities offered by solar-driven chemistry beyond the reduction of CO2 and water splitting. The authors offer their vision of the impact of this area of research on society and the economy.

4.
J Agric Food Chem ; 66(24): 6239-6245, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29807429

RESUMO

Synthesis, isomerism, and fungicidal activity against potato diseases of new (5 Z)-[2-(2,4,5-trioxopyrrolidin-3-ylidene)-4-oxo-1,3-thiazolidin-5-ylidene]acetate derivatives with 1,3-thiazolidine-4-one and pyrrolidine-2,3,5-trione moieties linked by an exocyclic C═C bond were described. Their structures were clearly confirmed by spectroscopic and spectrometric data (Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance, and mass spectrometry), elemental analysis, and X-ray diffraction crystallography. A bioassay for antifungal activity in vitro against Phytophthora infestans, Fusariun solani, Alternaria solani, Rhizoctonia solani, and Colletotrichum coccodes demonstrated that 2,4,5-trioxopyrrolidin-1,3-thiazolidine derivatives exhibited a relatively broad spectrum of antifungal activity. One of the compounds showed considerable activity against all of the strains; in the case of F. solani, P. infestans, and A. solani, it possesses comparable or better fungicidal efficacy than the positive control Consento. Consequently, this compound is a promising fungicidal candidate for plant protection.


Assuntos
Fungicidas Industriais/síntese química , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Alternaria/efeitos dos fármacos , Descoberta de Drogas , Fungicidas Industriais/química , Phytophthora infestans/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Rhizoctonia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA