Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Tissue Res ; 382(3): 447-455, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32661578

RESUMO

Although the primary cause of Duchenne muscular dystrophy (DMD) is a genetic mutation, the inflammatory response contributes directly to severity and exacerbation of the diaphragm muscle pathology. The omentum is a lymphoid organ with unique structural and immune functions serving as a sanctuary of hematopoietic and mesenchymal progenitors that coordinate immune responses in the peritoneal cavity. Upon activation, these progenitors expand and the organ produces large amounts of growth factors orchestrating tissue regeneration. The omentum of mdx mouse, a DMD murine model, is rich in milky spots and produces growth factors that promote diaphragm muscle regeneration. The present review summarizes the current knowledge of the omentum as an important immunologic structure and highlights its contribution to resolution of dystrophic muscle injury by providing an adequate environment for muscle regeneration, thus being a potential site for therapeutic interventions in DMD.


Assuntos
Diafragma/fisiopatologia , Omento/anatomia & histologia , Cavidade Peritoneal/anatomia & histologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos mdx
2.
Cell Tissue Res ; 377(2): 269-279, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30953145

RESUMO

Duchenne muscular dystrophy is a lethal X-linked muscle wasting disease due to mutations of the dystrophin gene leading to distinct susceptibility to degeneration and fibrosis among skeletal muscles. This study aims at verifying whether intense mdx diaphragm remodeling could be attributed to influences from the omentum, a lymphohematopoietic tissue rich in progenitor cells and trophic factors. Mdx omentum produces growth factors HGF and FGF and increased amounts of VEGF with pleiotropic actions upon muscular progenitors and myoblast differentiation. Histology revealed that the absence of the omentum reduced inflammation and collagen deposition in the diaphragm. The diaphragm from omentectomized mdx mice presents impaired repair with a predominance of collagen type I deposition, decreased muscle regeneration and a reduction in collagen type IV and indication of altered basal lamina integrity in the diaphragm. Omentectomy further reduced inflammatory infiltration and NFκ-B activation but a change in the pattern of muscle inflammation with low numbers of the F4/80+CD206+ M-2 macrophage subset. Although omentectomized mice had high levels of Pax7, myogenin and TNF-α, the percentage of myofibers undergoing regeneration was low thus suggesting that a lack of the omentum halts the muscle differentiation program. Such results support that omentum exerts a regulatory function inducing an inflammatory process that favors regeneration and inhibits fibrosis selectively in the diaphragm muscle thus being a potential site for therapeutic interventions in DMD.


Assuntos
Diafragma/fisiologia , Regeneração Tecidual Guiada/métodos , Distrofia Muscular de Duchenne/patologia , Omento/fisiologia , Animais , Diafragma/patologia , Modelos Animais de Doenças , Fibrose , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Omento/metabolismo
3.
Biomolecules ; 12(6)2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35740942

RESUMO

Muscle injuries are frequent in individuals with genetic myopathies and in athletes. Skeletal muscle regeneration depends on the activation and differentiation of satellite cells present in the basal lamina of muscle fibers. The skeletal muscle environment is critical for repair, metabolic and homeostatic function. Regulatory T cells (Treg) residing within skeletal muscle comprise a distinct and special cell population that modifies the inflammatory environment by secreting cytokines and amphiregulin, an epidermal growth factor receptor (EGFR) ligand that acts directly upon satellite cells, promoting tissue regeneration. This systematic review summarizes the current knowledge regarding the role of Treg in muscle repair and discusses their therapeutic potential in skeletal muscle injuries. A bibliographic search was carried out using the terms Treg and muscle regeneration and repair, covering all articles up to April 2021 indexed in the PubMed and EMBASE databases. The search included only published original research in human and experimental animal models, with further data analysis based on the PICO methodology, following PRISMA definitions and Cochrane guidelines.


Assuntos
Doenças Musculares , Linfócitos T Reguladores , Animais , Diferenciação Celular/fisiologia , Humanos , Fibras Musculares Esqueléticas , Músculo Esquelético , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA