Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mar Drugs ; 22(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786584

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Oligossacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Oligossacarídeos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Disbiose/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Manose/farmacologia , Manose/química , Manose/análogos & derivados , Glucuronatos/farmacologia
2.
Biomacromolecules ; 24(11): 4831-4842, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37677087

RESUMO

A diabetic foot ulcer is a common high-risk complication in diabetic patients, but there is still no universal dressing for clinical treatment. In this study, a novel dual-functional sulfated galactofucan polysaccharide/poly(vinyl alcohol) hydrogel (DPH20) is developed during freeze-thaw cycles. Experimental results indicated that DPH20 had a high specific surface area, a dense porous structure, and a good swelling property, which could effectively adsorb the exudates and keep the wound moist. Furthermore, DPH20 exhibited remarkably recruited macrophage capability and accelerated the inflammation stage by improving the expression of the mRNA of CCL2, CCR2, and CCL22 in macrophages. DPH20 could promote cell migration and growth factor release to accelerate tube formation under hyperglycemic conditions in cell models of L929s and HUEVCs, respectively. Significantly, DPH20 accelerates the reconstruction of the full-thickness skin wound by accelerating the recruitment of macrophages, promoting angiogenesis, and releasing the growth factor in the diabetic mouse model. Collectively, DPH20 is a promising multifunctional dressing to reshape the damaged tissue environment and accelerate wound healing. This study provides an efficient strategy to repair and regenerate diabetic skin ulcers.


Assuntos
Diabetes Mellitus , Hidrogéis , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Cicatrização , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Macrófagos , Peptídeos e Proteínas de Sinalização Intercelular
3.
Phytopathology ; 113(5): 858-865, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35906768

RESUMO

Gummy stem blight (GSB), caused by Didymella bryoniae, is a devastating fungal disease of melon worldwide. Breeding GSB-resistant cultivars with host resistance genes is considered the most economic and effective strategy to control this disease. In this study, 260 melon germplasm resources were screened for resistance to GSB, and an inbred line, H55R, that exhibited immunity to GSB was identified. To further understand the resistance mechanism of H55R against GSB, an F2 population was obtained from a cross between the GSB-susceptible line A15 and H55R, and genetic analysis indicated that the GSB resistance in H55R was controlled by a single dominant gene, tentatively named Gsb-7(t). The Gsb-7(t) gene was finally delimited to a 140-kb interval on chromosome 7 using bulked segregant analysis and chromosome walking strategies. Ten putative genes were annotated in this region that contains a wall-associated receptor kinase (WAK) gene MELO3C010403. The MELO3C010403 gene contains two alternative transcripts, MELO3C010403-T1 and MELO3C010403-T2, with five and seven nonsynonymous mutation sites, respectively. Gene expression analysis showed that expression of MELO3C010403-T2 but not MELO3C010403-T1 was significantly induced by D. bryoniae at 24 h postinoculation, indicating that the MELO3C010403-T2 transcript of MELO3C010403 was the most likely candidate gene of Gsb-7(t). Our results offer new genetic resources and will be helpful for the development of GSB-resistant melon cultivars in the future.


Assuntos
Cucurbitaceae , Cucurbitaceae/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Resistência à Doença/genética
4.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298817

RESUMO

Pulmonary fibrosis is a chronic, progressive, and fatal disease of the interstitial lung. There is currently a lack of efficient therapy to reverse the prognosis of patients. In this study, a fucoidan from Costaria costata was isolated, and its anti-idiopathic fibrosis activity was investigated both in vitro and in vivo. The chemical composition analysis showed that C. costata polysaccharide (CCP) consists of galactose and fucose as the main monosaccharides with a sulfate group content of 18.54%. Further study found that CCP could resist TGF-ß1-induced epithelial-mesenchymal transition (EMT) in A549 cells by inhibiting the TGF-ß/Smad and PI3K/AKT/mTOR signaling pathways. Moreover, in vivo study found that CCP treatment alleviated bleomycin (BLM)-stimulated fibrosis and inflammation in mice lung tissue. In conclusion, the present study suggests that CCP could protect the lung from fibrosis by relieving the EMT process and inflammation in lung cells.


Assuntos
Fibrose Pulmonar Idiopática , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Pulmão/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Transição Epitelial-Mesenquimal , Inflamação/metabolismo , Bleomicina
5.
Fish Shellfish Immunol ; 122: 21-28, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35091026

RESUMO

The supplemental effect of Pyropia yezoensis enzymatic hydrolysate (PYE) in fish diet was evaluated in zebrafish (Danio rerio) model. A basal diet supplemented with PYE at 0, 0.1, 1.0 and 2.0% were fed to one-month old zebrafish for 6 weeks, its growth performance and immunity index were evaluated. The increase in weight gain was significantly higher when supplementary 1% PYE which shows a positive effect on growth performance of zebrafish. In addition, crude protein content of fish body was increased in all PYE supplemental groups. The innate immune responses and activity of digestive enzymes in zebrafish were enhanced with dietary supplementation of PYE additives. Compared with the control group, lysozyme (LYZ) and interleukin-10 (IL-10) content in zebrafish intestines were up-regulated in groups fed with 0.1% and 1% PYE. The mRNA expression levels of LYZ and IL-10 in zebrafish intestines were consistent with ELISA results. The content of tumor necrosis factor (TNF-α) reduced in 1% and 2% PYE groups. Furthermore, PYE down-regulated the relative abundance of pathogenic bacteria (Aeromonadaceae) and up-regulated the relative abundance of fish probiotics (Brevibacillus) in intestinal flora. The findings in this study indicated that PYE supplementation in diet could promote growth, improve immunity and regulate intestinal flora, which made PYE considered as an potential aquatic additive.


Assuntos
Ração Animal , Peixe-Zebra , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Imunidade Inata , Intestinos
6.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335165

RESUMO

Nowadays, natural polysaccharides-based hydrogels have achieved promising results as dressings to promote skin healing. In the present study, we prepared a novel hydrogel nanocomposite with poly(vinyl alcohol) (PVA) and sulfated heterosaccharide (UF), named UPH. The SEM results showed that the UPH had dense porous structures with a high porosity and a specific surface area. The UPH had a good swelling property, which can effectively adsorb exudate and keep the wound moist. The in vitro experiments results showed that the UPH was non-cytotoxic and could regulate the inflammatory response and promote the migration of fibroblasts significantly. The phenotypic, histochemistry, and Western blot analyses showed UPH treatment accelerated the wound healing and recovery of skin tissue at wound sites in a C57BL/6 mouse model. Furthermore, the UPH could promote the inflammation process to onset earlier and last shorter than that in a normal process. Given its migration-promoting ability and physicochemical properties, the UPH may provide an effective application for the treatment and management of skin wounds.


Assuntos
Bandagens , Hidrogéis , Nanocompostos , Cicatrização , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Nanocompostos/química , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
7.
Mar Drugs ; 18(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120786

RESUMO

Nephrotic syndrome (NS) is a clinical syndrome with a variety of causes, mainly characterized by heavy proteinuria, hypoalbuminemia, and edema. At present, identification of effective and less toxic therapeutic interventions for nephrotic syndrome remains to be an important issue. In this study, we isolated fucoidan from Saccharina japonica and prepared its depolymerized fragment by oxidant degradation. Fucoidan and its depolymerized fragment had similar chemical constituents. Their average molecular weights were 136 and 9.5 kDa respectively. The effect of fucoidan and its depolymerized fragment on adriamycin-induced nephrotic syndrome were investigated in a rat model. The results showed that adriamycin-treated rats had heavy proteinuria and increased blood urea nitrogen (BUN), serum creatinine (SCr), total cholesterol (TC), and total triglyceride (TG) levels. Oral administration of fucoidan or low-molecular-weight fucoidan for 30 days could significantly inhibit proteinuria and decrease the elevated BUN, SCr, TG, and TC level in a dose-dependent manner. At the same dose (100 mg/kg), low-molecular-weight fucoidan had higher renoprotective activity than fucoidan. Their protective effect on nephrotic syndrome was partly related to their antioxidant activity. The results suggested that both fucoidan and its depolymerized fragment had excellent protective effect on adriamycin-induced nephrotic syndrome, and might have potential for the treatment of nephrotic syndrome.


Assuntos
Síndrome Nefrótica/prevenção & controle , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Alga Marinha/química , Administração Oral , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Oceanos e Mares , Polissacarídeos/administração & dosagem , Substâncias Protetoras/administração & dosagem , Ratos
8.
Mar Drugs ; 18(6)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630523

RESUMO

The main pathologic changes of the Parkinson's disease (PD) is dopaminergic (DA) neurons lost. Apoptosis was one of the important reasons involved in the DA lost. Our previous study found a fucoidan fraction sulfated heterosaccharide (UF) had neuroprotective activity. The aim of this study was to clarify the mechanism of UF on DA neurons using human dopaminergic neuroblastoma (SH-SY5Y) cells a typical as a PD cellular model. Results showed that UF prevented MPP+-induced SH-SY5Y cells apoptosis and cell death. Additionally, UF pretreated cells increased phosphorylation of Akt, PI3K and NGF, which means UF-treated active PI3K-Akt pathway. Moreover, UF treated cells decreased the expression of apoptosis-associated protein, such as the ratio of Bax/Bcl-2, GSK3ß, caspase-3 and p53 nuclear induced by MPP+. This effect was partially blocked by PI3K inhibitor LY294002. Our data suggested that protective effect of UF against MPP+-induced SH-SY5Y cells death by affecting the PI3K-Akt pathway. These findings contribute to a better understanding of the critical roles of UF in treating PD and may elucidate the molecular mechanisms of UF effects in PD.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Polissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , 1-Metil-4-fenilpiridínio/antagonistas & inibidores , Caspases/metabolismo , Linhagem Celular Tumoral , Cromonas/farmacologia , Humanos , Morfolinas/farmacologia , Neuroblastoma , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/metabolismo
9.
Mar Drugs ; 16(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150552

RESUMO

A variety of biologically active products have been isolated from Gracilariopsis lemaneiformis. In the present study, two novel angiotensin-converting enzyme (ACE) inhibitory peptides, FQIN [M(O)] CILR, and TGAPCR, were screened and identified from G. lemaneiformis protein hydrolysates by LC-MS/MS. The IC50 values of FQIN [M(O)] CILR and TGAPCR were 9.64 ± 0.36 µM and 23.94 ± 0.82 µM, respectively. In the stability study, both peptides showed stabilities of pH, temperature, simulated gastrointestinal digestion, and ACE hydrolysis. The Lineweaver⁻Burk plot showed that the two peptides were noncompetitive inhibitors of ACE. Molecular docking simulated the intermolecular interactions of two peptides and ACE, and the two peptides formed hydrogen bonds with the active pockets of ACE. However, FQIN [M(O)] CILR was more closely linked to the active pockets of ACE, thereby exerting better ACE inhibition. Spontaneously hypertensive rats (SHRs) were studied with an oral dose of 10 mg/kg body weight. Both peptides reduced systolic blood pressure (SBP) and diastolic blood pressure (DBP) in SHRs, of which FQIN [M(O)] CILR was able to reduce the systolic blood pressure by 34 mmHg (SBP) (p < 0.05). Therefore, FQIN [M(O)] CILR was an excellent ACE inhibitory peptide.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , Peptídeos/farmacologia , Rodófitas/química , Administração Oral , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/uso terapêutico , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Ratos , Ratos Endogâmicos SHR , Espectrometria de Massas em Tandem
10.
Mar Drugs ; 16(3)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509717

RESUMO

Parkinson's disease (PD) is a neurodegenerative movement disorder that is caused by a selective loss of dopaminergic neurons. Current PD treatments provide symptomatic relief but do not prevent or decelerate disease progression. Previous studies have suggested that acetylated and phosphorylated porphyran, derived from Porphyra, produces a neuroprotective effect against 6-OHDA-induced damage. Due to its antioxidant and neuroprotective potential, this study evaluates whether oligo-porphyran (OP) could be beneficial in an experimental model of PD in mice. The drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was intraperitoneally injected (20 mg/kg body weight) for seven days to simulate PD, followed by OP administration. We found that the behavioral deficits in spontaneous motor activity, latency to descend in a pole test, and suspension in a traction test were ameliorated, and excessive dopamine (DA) metabolism was suppressed after OP treatment. Additionally, we found that OP protected dopaminergic neurons by preventing MPTP-induced decreases in dopaminergic transporter and tyrosine hydroxylase protein levels. We speculated whether OP regulates a signaling pathway that affects the behavioral changes seen in PD mice. In this study, the PI3K/Akt/Bcl-2 pathway was detected. Our results demonstrate that OP increased the phosphorylation of PI3K/Akt/GSK-3ß and inhibited the activation of caspase-3 and poly (ADP-ribose) polymerase, with changes in the Bax/Bcl-2 ratio. These results showed that OP might promote DA neuron survival in vivo by regulating the PI3K/Akt/Bcl-2 pathway, thereby ameliorating the neurobehavioral deficits in a PD mouse model and suggesting OP as a neuroprotective treatment for PD.


Assuntos
Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Porphyra/química , Sefarose/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sefarose/farmacologia , Sefarose/uso terapêutico
11.
Mar Drugs ; 15(4)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383489

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent studies suggest that sulfated hetero-polysaccharides (UF) protect against developing PD. However, the detailed mechanisms of how UF suppress neuronal death have not been fully elucidated. We investigated the cytoprotective mechanisms of UF using human dopaminergic neuroblastoma SH-SY5Y cells as a PD model. UF prevented H2O2-induced apoptotic cell death in SH-SY5Y cells in a dose-dependent manner. An examination of the PI3K/Akt upstream pathway revealed that UF-pretreated cells showed a decreased relative density of Akt, PI3K, and TrkA, and increased the phosphorylation of Akt, PI3K, and NGF; the PI3K inhibitor, LY294002, partially prevented this effect. An examination of the PI3K/Akt downstream pathway revealed the increased expression of the apoptosis-associated markers Bax, p53, CytC, and GSK3ß, and the decreased expression of Bcl-2 in UF-treated cells. UF-treated cells also exhibited decreased caspase-3, caspase-8, and caspase-9 activities, which induced cell apoptosis. Our results demonstrate that UF affect the PI3K/Akt pathway, as well as downstream signaling. Therefore, the UF-mediated activation of PI3K/Akt could provide a new potential therapeutic strategy for neurodegenerative diseases associated with oxidative injury. These findings contribute to a better understanding of the critical roles of UF in the treatment of PD.


Assuntos
Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Polissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfatos/farmacologia , Caspases/metabolismo , Linhagem Celular , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
12.
Br J Pharmacol ; 181(9): 1404-1420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37994102

RESUMO

BACKGROUND AND PURPOSE: Diabetic vascular complication is a leading cause of disability and mortality in diabetes patients. Low molecular weight fucoidan (LMWF) is a promising drug candidate for vascular complications. Glycocalyx injury predates the occurrence of diabetes vascular complications. Protecting glycocalyx from degradation relieves diabetic vascular complications. LMWF has the potential to protect the diabetes endothelial glycocalyx from shedding. EXPERIMENTAL APPROACH: The protective effect of LMWF on diabetic glycocalyx damage was investigated in db/db mice and Human Umbilical Vein Endothelial Cells (HUVEC) through transmission electron microscopy and WGA labelling. The effect of LMWF on glycocalyx degrading enzymes expression was investigated. Neuraminidase2 (NEU2) overexpression/knockdown was performed in HUVECs to verify the important role of NEU2 in glycocalyx homeostasis. The interaction between NEU2 and LMWF was detected by ELISA and surface plasmon resonance analysis (SPR). KEY RESULTS: LMWF normalizes blood indexes including insulin, triglyceride, uric acid and reduces diabetes complications adverse events. LMWF alleviates diabetic endothelial glycocalyx damage in db/db mice kidney/aorta and high concentration glucose treated HUVECs. NEU2 is up-regulated in db/db mice and HUVECs with high concentration glucose. Overexpression/knockdown NEU2 results in glycocalyx shedding in HUVEC. Down-regulation and interaction of LMWF with NEU2 is a new therapy target in glycocalyx homeostasis. NEU2 was positively correlated with phosphorylated IR-ß. CONCLUSION AND IMPLICATIONS: NEU2 is an effective target for glycocalyx homeostasis and LMWF is a promising drug to alleviate vascular complications in diabetes by protecting endothelial glycocalyx.


Assuntos
Antineoplásicos , Diabetes Mellitus , Angiopatias Diabéticas , Polissacarídeos , Camundongos , Animais , Humanos , Glicocálix , Peso Molecular , Células Endoteliais da Veia Umbilical Humana , Glucose
13.
Int J Biol Macromol ; 272(Pt 1): 132846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834111

RESUMO

Skin is the first barrier of body which stands guard for defending aggressive pathogens and environmental pressures all the time. Cutaneous metabolism changes in harmful exposure, following with skin dysfunctions and diseases. Lots of researches have reported that polysaccharides extracted from seaweeds exhibited multidimensional bioactivities in dealing with skin disorder. However, few literature systematically reviews them. The aim of the present paper is to summarize structure, bioactivities and structure-function relationship of algal polysaccharides acting on skin. Algal polysaccharides show antioxidant, immunomodulating, hydration regulating, anti-melanogenesis and extracellular matrix (ECM) regulating abilities via multipath ways in skin. These bioactivities are determined by various parameters, including seaweed species, molecular weight, monosaccharides composition and substitute groups. In addition, potential usages of algae-derived polysaccharides in skin care and therapy are also elaborated. Algal polysaccharides are potential ingredients in formulation that providing anti-aging efficacy for skin.


Assuntos
Polissacarídeos , Alga Marinha , Envelhecimento da Pele , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Envelhecimento da Pele/efeitos dos fármacos , Humanos , Alga Marinha/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/uso terapêutico , Animais , Pele/efeitos dos fármacos , Pele/metabolismo , Higiene da Pele/métodos , Relação Estrutura-Atividade
14.
Macromol Biosci ; 24(4): e2300292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37985229

RESUMO

Seaweed polysaccharides can be used for protective skin photoaging which is caused by long-term exposure to ultraviolet B (UVB). In this study, a multifunctional composite hydrogel (FACP5) is prepared using sulfated galactofucan polysaccharides, alginate oligosaccharides as active ingredients, and polyacrylonitrile modified κ-Carrageenan as substrate. The properties of FACP5 show that it has good water retention, spreadability, and adhesion. The antiphotoaging activity is evaluated in vitro and in vivo. In vitro experiments demonstrate that the components of FACP5 exhibit good biocompatibility, antioxidant, and anti-tyrosinase activities, and could reduce the cell death rate induced by UVB. In vivo experiments demonstrate that, compared with the mice skin in model group, the skin water content treated with FACP5 increases by 29.80%; the thicknesses of epidermis and dermis decrease by 53.56% and 43.98%, respectively; the activities of catalase and superoxide dismutase increase by 1.59 and 0.72 times, respectively; the contents of interleukin-6 and tumor necrosis factor-α decrease by 19.21% and 17.85%, respectively; hydroxyproline content increases by 32.42%; the expression level of matrix metalloproteinase-3 downregulates by 42.80%. These results indicate that FACP5 has skin barrier repairing, antioxidant, anti-inflammatory, and inhibiting collagen degradation activies, FACP5 can be used as a skin protection remedy for photoaging.


Assuntos
Alga Marinha , Envelhecimento da Pele , Animais , Camundongos , Antioxidantes/farmacologia , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Pele , Polissacarídeos/farmacologia , Água , Raios Ultravioleta/efeitos adversos
15.
Carbohydr Polym ; 342: 122407, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048201

RESUMO

Nanotechnology has revolutionized the diagnosis, monitoring and treatment of biomedical diseases, in which nanocarriers have greatly improved the targeting and bioavailability of antitumor drugs. The marine natural polysaccharides fucoidan, chitosan, alginate, carrageenan and porphyran have broad-spectrum bioactivities and unique physicochemical properties such as excellent non-toxicity, biocompatibility, biodegradability and reproducibility, which have placed them as a principal focus in the nanocarrier field. Nanocarriers based on different types of marine polysaccharides are distinctive in addressing antitumor therapeutic challenges such as targeting, environmental responsiveness, drug resistance, tissue toxicity, enhancing diagnostic imaging, overcoming the first-pass effect and innovative 3D binding. Additionally, they all share the possibility of relatively easy chemical modification, while their separation into well-defined derivatives provide innovative structure-activity relationship possibilities. Liposomes, nanoparticles and polymer-micelles constructed from them can efficiently deliver drugs such as paclitaxel, gemcitabine, siRNA and others, which are widely used in radiotherapy, chemotherapy, immunotherapy, nucleic acid therapy and photothermal therapy, yet there are still infinite possibilities for innovation and exploration. This article reviews the recent advances and challenges of marine polysaccharide-based delivery systems as oncology drug nanocarriers.


Assuntos
Antineoplásicos , Portadores de Fármacos , Nanopartículas , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Humanos , Nanopartículas/química , Animais , Organismos Aquáticos/química , Alginatos/química , Quitosana/química , Neoplasias/tratamento farmacológico , Lipossomos/química , Micelas , Carragenina/química
16.
Biomed Pharmacother ; 173: 116360, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422657

RESUMO

Chemotherapy remains the cornerstone of pancreatic cancer treatment. However, the dense interstitial and immunosuppressive microenvironment frequently render the ineffective anti-tumor activity of chemotherapeutic agents. Macrophages play a key role in the tumor immunomodulation. In this study, we found that low molecular weight of fucoidan (LF2) directly regulated the differentiation of mononuclear macrophages into the CD86+ M1 phenotype. LF2 significantly upregulated the expressions of M1 macrophage-specific cytokines, including iNOS, IL-6, TNFα and IL-12. LF2 modulated macrophage phenotypic transformation through activation of TLR4-NFκB pathway. Furthermore, we observed that LF2 enhanced the pro-apoptotic activity of oxaliplatin (OXA) in vitro by converting macrophages to a tumoricidal M1 phenotype. Meanwhile, LF2 increased intratumoral M1 macrophage infiltration and ameliorated the immunosuppressed tumor microenvironment, which in turn enhanced the anti-pancreatic ductal adenocarcinoma (PDAC) activity of OXA in vivo. Taken together, our results suggested that LF2 could act as a TLR4 agonist targeting macrophages and has a synergistic effect against PDAC when combined with OXA.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Polissacarídeos , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Microambiente Tumoral , Receptor 4 Toll-Like , Peso Molecular , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/patologia , Imunossupressores/farmacologia
17.
Carbohydr Polym ; 332: 121883, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431404

RESUMO

Silvetia siliquosa, the only species of the family Fucaceae in China, is used as a medicine food homology. Fucoidan from S. siliquosa was extracted by hot water twice thoroughly (13 % of total yield), and a purified fucoidan SSF with a molecular weight of 93 kD was obtained. Chemical composition analysis demonstrated that SSF was primarily composed of sulfate (21.68 wt%) and fucose (84 % of all neutral monosaccharides). IR, methylation analysis, NMR and ESI-MS results indicated SSF had the backbone of mainly (1 â†’ 3)-α-L-fucopyranose and minor (1 â†’ 4)-α-L-fucopyranose, with little 1,3 and 1,4 branched ß-D-Xylp and ß-D-Galp. The in vitro immunomodulatory test on RAW 264.7 cells showed that SSF could up-regulate the expression of immune related factors and proteins in a concentration-dependent manner, but the immunomodulatory effect disappeared from desulfated SSF. This research indicated that highly sulfated fucan possessed immunomodulatory effect and the importance of sulfate groups in the activity of SSF.


Assuntos
Phaeophyceae , Polissacarídeos , Animais , Camundongos , Células RAW 264.7 , Polissacarídeos/farmacologia , Polissacarídeos/química , Sulfatos/química , Parede Celular
18.
Front Pharmacol ; 15: 1397761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104391

RESUMO

Oral leukoplakia (OLK) is the most common oral precancerous lesion, and 3%-17% of OLK patients progress to oral squamous cell carcinoma. OLK is susceptible to recurrence and has no effective treatment. However, conventional drugs have significant side effects and limitations. Therefore, it is important to identify drugs that target OLK. In this study, scavenger receptor A (SR-A) was found to be abnormally highly expressed in the oral mucosal epithelial cells of OLK patients, whereas molecular biology studies revealed that low molecular weight fucoidan (LMWF) promoted apoptosis of dysplastic oral keratinocytes (DOK) and inhibited the growth and migration of DOK, and the inhibitory effect of LMWF on OLK was achieved by regulating the SR-A/Wnt signaling axis and related genes. Based on the above results and the special situation of the oral environment, we constructed LMWF/poly(caprolactone-co-lactide) nanofiber membranes with different structures for the in-situ treatment of OLK using electrospinning technology. The results showed that the nanofiber membranes with a shell-core structure had the best physicochemical properties, biocompatibility, and therapeutic effect, which optimized the LMWF drug delivery and ensured the effective concentration of the drug at the target point, thus achieving precise treatment of local lesions in the oral cavity. This has potential application value in inhibiting the development of OLK.

19.
Carbohydr Polym ; 299: 120173, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876788

RESUMO

COVID-19 caused by SARS-CoV-2 has spread around the world at an unprecedented rate. A more homogeneous oligo-porphyran with mean molecular weight of 2.1 kD, named OP145, was separated from Pyropia yezoensis. NMR analysis showed OP145 was mainly composed of →3)-ß-d-Gal-(1 â†’ 4)-α-l-Gal (6S) repeating units with few replacement of 3,6-anhydride, and the molar ratio was 1:0.85:0.11. MALDI-TOF MS revealed OP145 contained mainly tetrasulfate-oligogalactan with Dp range from 4 to 10 and with no more than two 3,6-anhydro-α-l-Gal replacement. The inhibitory activity of OP145 against SARS-CoV-2 was investigated in vitro and in silico. OP145 could bind to Spike glycoprotein (S-protein) through SPR result, and pseudovirus tests confirmed that OP145 could inhibite the infection with an EC50 of 37.52 µg/mL. Molecular docking simulated the interaction between the main component of OP145 and S-protein. All the results indicated that OP145 had the potency to treat and prevent COVID-19.


Assuntos
Antivirais , COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sulfatos , Antivirais/farmacologia , Rodófitas/química
20.
Zhong Yao Cai ; 35(2): 241-3, 2012 Feb.
Artigo em Zh | MEDLINE | ID: mdl-22822671

RESUMO

OBJECTIVE: To analyze the floral volatiles of Polyonum cuspidatum flower. METHODS: The floral volatiles of P. cuspidaturn flower were investigated by Headspace Sampler GC/MS. RESULTS: 21 compounds were separated and determined from P. cuspidatumrn, which amounted to 99.29% of the total volatiles. 5 compounds including (E)-2-hyexenoic acid methyl ester, 1-phenyl-l-pentanone, (E)-4-hexenoic acid methyl ester, 3-hexenoic acid methyl ester, 2-methyl-6-methylene-1 and 7-octadien-3-one were the main constituents existed in P. cuspidatum flower, which amounted to 63.23% of the total volatiles. Organic ester compounds amounted to 52.09% of the total volatiles. Hexenoic acid methyl ester compounds were most, which amounted to 85.66% of the total organic ester compounds. In addition, the 1-phenyl-1-pentanone and acetophenone were 16.30% and 4.33%, which amounted to 20.63% of the total volatiles. CONCLUSION: The result of this research provides a scientific method for the reasonable exploitation and utilization of P. cuspidatum flower.


Assuntos
Fallopia japonica/química , Flores/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/análise , Ésteres/análise , Cetonas/análise , Óleos Voláteis/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA