Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 173(4): 839-850.e18, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29628142

RESUMO

Maize abnormal chromosome 10 (Ab10) encodes a classic example of true meiotic drive that converts heterochromatic regions called knobs into motile neocentromeres that are preferentially transmitted to egg cells. Here, we identify a cluster of eight genes on Ab10, called the Kinesin driver (Kindr) complex, that are required for both neocentromere motility and preferential transmission. Two meiotic drive mutants that lack neocentromere activity proved to be kindr epimutants with increased DNA methylation across the entire gene cluster. RNAi of Kindr induced a third epimutant and corresponding loss of meiotic drive. Kinesin gliding assays and immunolocalization revealed that KINDR is a functional minus-end-directed kinesin that localizes specifically to knobs containing 180 bp repeats. Sequence comparisons suggest that Kindr diverged from a Kinesin-14A ancestor ∼12 mya and has driven the accumulation of > 500 Mb of knob repeats and affected the segregation of thousands of genes linked to knobs on all 10 chromosomes.


Assuntos
Centrômero/metabolismo , Cinesinas/metabolismo , Meiose , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Centrômero/genética , Cromossomos de Plantas , Evolução Molecular , Haplótipos , Hibridização in Situ Fluorescente , Cinesinas/antagonistas & inibidores , Cinesinas/classificação , Cinesinas/genética , Modelos Genéticos , Mutagênese , Filogenia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sequenciamento Completo do Genoma , Zea mays/genética
2.
Genes Dev ; 34(17-18): 1239-1251, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820038

RESUMO

A maize chromosome variant called abnormal chromosome 10 (Ab10) converts knobs on chromosome arms into neocentromeres, causing their preferential segregation to egg cells in a process known as meiotic drive. We previously demonstrated that the gene Kinesin driver (Kindr) on Ab10 encodes a kinesin-14 required to mobilize neocentromeres made up of the major tandem repeat knob180. Here we describe a second kinesin-14 gene, TR-1 kinesin (Trkin), that is required to mobilize neocentromeres made up of the minor tandem repeat TR-1. Trkin lies in a 4-Mb region of Ab10 that is not syntenic with any other region of the maize genome and shows extraordinary sequence divergence from Kindr and other kinesins in plants. Despite its unusual structure, Trkin encodes a functional minus end-directed kinesin that specifically colocalizes with TR-1 in meiosis, forming long drawn out neocentromeres. TRKIN contains a nuclear localization signal and localizes to knobs earlier in prophase than KINDR. The fact that TR-1 repeats often co-occur with knob180 repeats suggests that the current role of the TRKIN/TR-1 system is to facilitate the meiotic drive of the KINDR/knob180 system.


Assuntos
Centrômero/genética , Centrômero/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Cromossomos de Plantas/genética , Genes de Plantas/genética , Meiose , Modelos Genéticos , Transporte Proteico/genética
3.
Genome Res ; 32(2): 309-323, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949668

RESUMO

The zygote, a totipotent stem cell, is crucial to the life cycle of sexually reproducing organisms. It is produced by the fusion of two differentiated cells-the egg and sperm, which in plants have radically different siRNA transcriptomes from each other and from multicellular embryos. Owing to technical challenges, the epigenetic changes that accompany the transition from differentiated gametes to totipotent zygote are poorly understood. Because siRNAs serve as both regulators and outputs of the epigenome, we characterized small RNA transcriptomes of zygotes from rice. Zygote small RNAs exhibit extensive maternal carryover and an apparent lack of paternal contribution, indicated by absence of sperm signature siRNAs. Zygote formation is accompanied by widespread redistribution of 24-nt siRNAs relative to gametes, such that ∼70% of the zygote siRNA loci do not overlap any egg cell siRNA loci. Newly detected siRNA loci in zygote are gene-proximal and not associated with centromeric heterochromatin, similar to canonical siRNAs, in sharp contrast to gametic siRNA loci that are gene-distal and heterochromatic. In addition, zygote but not egg siRNA loci are associated with high DNA methylation in the mature embryo. Thus, the zygote begins transitioning before the first embryonic division to an siRNA profile that is associated with future RdDM in embryogenesis. These findings indicate that, in addition to changes in gene expression, the transition to totipotency in the plant zygote is accompanied by resetting of the epigenetic reprogramming that occurred during gamete formation.


Assuntos
Oryza , Zigoto , Metilação de DNA/genética , Epigênese Genética , Oryza/genética , Oryza/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Zigoto/metabolismo
4.
Plant Physiol ; 195(2): 1161-1179, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38366582

RESUMO

Paramutation is the transfer of mitotically and meiotically heritable silencing information between two alleles. With paramutation at the maize (Zea mays) booster1 (b1) locus, the low-expressed B' epiallele heritably changes the high-expressed B-I epiallele into B' with 100% frequency. This requires specific tandem repeats and multiple components of the RNA-directed DNA methylation pathway, including the RNA-dependent RNA polymerase (encoded by mediator of paramutation1, mop1), the second-largest subunit of RNA polymerase IV and V (NRP(D/E)2a, encoded by mop2), and the largest subunit of RNA Polymerase IV (NRPD1, encoded by mop3). Mutations in mop genes prevent paramutation and release silencing at the B' epiallele. In this study, we investigated the effect of mutations in mop1, mop2, and mop3 on chromatin structure and DNA methylation at the B' epiallele, and especially the regulatory hepta-repeat 100 kb upstream of the b1 gene. Mutations in mop1 and mop3 resulted in decreased repressive histone modifications H3K9me2 and H3K27me2 at the hepta-repeat. Associated with this decrease were partial activation of the hepta-repeat enhancer function, formation of a multi-loop structure, and elevated b1 expression. In mop2 mutants, which do not show elevated b1 expression, H3K9me2, H3K27me2 and a single-loop structure like in wild-type B' were retained. Surprisingly, high CG and CHG methylation levels at the B' hepta-repeat remained in all three mutants, and CHH methylation was low in both wild type and mutants. Our results raise the possibility of MOP factors mediating RNA-directed histone methylation rather than RNA-directed DNA methylation at the b1 locus.


Assuntos
Metilação de DNA , Elementos Facilitadores Genéticos , Histonas , Mutação , Zea mays , Zea mays/genética , Zea mays/metabolismo , Metilação de DNA/genética , Histonas/metabolismo , Histonas/genética , Mutação/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Alelos , Metilação , Cromatina/genética , Cromatina/metabolismo
5.
Plant Cell ; 34(10): 3685-3701, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35775949

RESUMO

Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.


Assuntos
Arabidopsis , DNA Glicosilases , Arabidopsis/genética , DNA/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Metilação de DNA/genética , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Impressão Genômica/genética , RNA Interferente Pequeno/genética , Zea mays/genética , Zea mays/metabolismo
6.
Genome Res ; 30(2): 173-184, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896557

RESUMO

Gametes constitute a critical stage of the plant life cycle during which the genome undergoes reprogramming in preparation for embryogenesis. Here, we examined genome-wide distributions of small RNAs in the sperm and egg cells of rice. We found that 24-nt siRNAs, which are a hallmark of RNA-directed DNA methylation (RdDM) in plants, were depleted from heterochromatin boundaries in both gametes relative to vegetative tissues, reminiscent of siRNA patterns in DDM1-type nucleosome remodeler mutants. In sperm cells, 24-nt siRNAs were spread across heterochromatic regions, while in egg cells, 24-nt siRNAs were concentrated at a smaller number of heterochromatic loci throughout the genome, especially at loci which also produced siRNAs in other tissues. In both gametes, patterns of CHH methylation, typically a strong indicator of RdDM, were similar to vegetative tissues, although lower in magnitude. These findings indicate that the small RNA transcriptome undergoes large-scale redistribution in both male and female gametes, which is not correlated with recruitment of DNA methyltransferases in gametes and suggestive of unexplored regulatory activities of gamete small RNAs.


Assuntos
Células Germinativas/crescimento & desenvolvimento , Oryza/genética , RNA Interferente Pequeno/genética , Processos de Determinação Sexual/genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Genoma de Planta/genética , Heterocromatina/genética , Nucleossomos/genética , Oryza/crescimento & desenvolvimento , Transcriptoma/genética
7.
Plant Cell ; 30(7): 1617-1627, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884624

RESUMO

Plants make use of distinct types of DNA methylation characterized by their DNA methyltransferases and modes of regulation. One type, RNA-directed DNA methylation (RdDM), is guided by small interfering RNAs (siRNAs) to the edges of transposons that are close to genes, areas called mCHH islands in maize (Zea mays). Another type, chromomethylation, is guided by histone H3 lysine 9 methylation to heterochromatin across the genome. We examined DNA methylation and small RNA expression in plant tissues that were mutant for both copies of the genes encoding chromomethylases as well as mutants for both copies of the genes encoding DECREASED DNA METHYLATION1 (DDM1)-type nucleosome remodelers, which facilitate chromomethylation. Both sets of double mutants were nonviable but produced embryos and endosperm. RdDM was severely compromised in the double mutant embryos, both in terms of DNA methylation and siRNAs. Loss of 24-nucleotide siRNA from mCHH islands was coupled with a gain of 21-, 22-, and 24-nucleotide siRNAs in heterochromatin. These results reveal a requirement for both chromomethylation and DDM1-type nucleosome remodeling for RdDM in mCHH islands, which we hypothesize is due to dilution of RdDM components across the genome when heterochromatin is compromised.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Metilação de DNA/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Proteínas de Plantas/genética , Zea mays/genética
8.
Annu Rev Genet ; 46: 443-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22974300

RESUMO

Despite many challenges, great progress has been made in identifying kinetochore proteins and understanding their overall functions relative to spindles and centromeric DNA. In contrast, less is known about the specialized centromeric chromatin environment and how it may be involved in regulating the assembly of kinetochore proteins. Multiple independent lines of evidence have implicated transcription and the resulting RNA as an important part of this process. Here, we summarize recent literature demonstrating the roles of centromeric RNA in regulating kinetochore assembly and maintenance. We also review literature suggesting that the process of centromeric transcription may be as important as the resulting RNA and that such transcription may be involved in recruiting the centromeric histone variant CENH3.


Assuntos
Centrômero/genética , RNA Fúngico/genética , Sequências Reguladoras de Ácido Ribonucleico , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Centrômero/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Histonas/genética , Histonas/metabolismo , Mitose , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica
9.
Mol Cell ; 37(5): 679-89, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20116306

RESUMO

Endogenous RNA-directed RNA polymerases (RdRPs) are cellular components capable of synthesizing new complementary RNAs from existing RNA templates. We present evidence for successive engagement of two different RdRPs in an endogenous siRNA-based mechanism targeting specific mRNAs in C. elegans soma. In the initiation stage of this process, a group of mRNA species are chosen as targets for downregulation, leading to accumulation of rare 26 nt 5'-phosphorylated antisense RNAs that depend on the RdRP homolog RRF-3, the Argonaute ERGO-1, DICER, and a series of associated ("ERI") factors. This primary process leads to production of a much more abundant class of 22 nt antisense RNAs, dependent on a secondary RdRP (RRF-1) and associating with at least one distinct Argonaute (NRDE-3). The requirement for two RdRP/Argonaute combinations and initiation by a rare class of uniquely structured siRNAs in this pathway illustrate the caution and flexibility used as biological systems exploit the physiological copying of RNA.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Transcrição Gênica , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Fatores de Iniciação em Eucariotos/metabolismo , Exorribonucleases/metabolismo , Mutação , Fosforilação , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Ribonuclease III/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(47): 14728-33, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26553984

RESUMO

The maize genome is relatively large (∼ 2.3 Gb) and has a complex organization of interspersed genes and transposable elements, which necessitates frequent boundaries between different types of chromatin. The examination of maize genes and conserved noncoding sequences revealed that many of these are flanked by regions of elevated asymmetric CHH (where H is A, C, or T) methylation (termed mCHH islands). These mCHH islands are quite short (∼ 100 bp), are enriched near active genes, and often occur at the edge of the transposon that is located nearest to genes. The analysis of DNA methylation in other sequence contexts and several chromatin modifications revealed that mCHH islands mark the transition from heterochromatin-associated modifications to euchromatin-associated modifications. The presence of an mCHH island is fairly consistent in several distinct tissues that were surveyed but shows some variation among different haplotypes. The presence of insertion/deletions in promoters often influences the presence and position of an mCHH island. The mCHH islands are dependent upon RNA-directed DNA methylation activities and are lost in mop1 and mop3 mutants, but the nearby genes rarely exhibit altered expression levels. Instead, loss of an mCHH island is often accompanied by additional loss of DNA methylation in CG and CHG contexts associated with heterochromatin in nearby transposons. This suggests that mCHH islands and RNA-directed DNA methylation near maize genes may act to preserve the silencing of transposons from activity of nearby genes.


Assuntos
Metilação de DNA/genética , Eucromatina/genética , Genoma de Planta , Heterocromatina/genética , RNA de Plantas/metabolismo , Zea mays/genética , Sequência Conservada/genética , Ilhas de CpG/genética , DNA Intergênico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Mutação INDEL/genética , Sequências Repetidas Invertidas/genética , Sítio de Iniciação de Transcrição
11.
Plant Cell ; 26(12): 4903-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25465407

RESUMO

RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2. The data revealed that the majority of the genome exists in a heterochromatic state defined by inaccessible chromatin that is marked by H3K9me2 and H3K27me2 but that lacks RdDM. The minority of the genome marked by RdDM was predominantly near genes, and its overall chromatin structure appeared more similar to euchromatin than to heterochromatin. These and other data indicate that the densely staining chromatin defined as heterochromatin differs fundamentally from RdDM-targeted chromatin. We propose that small interfering RNAs perform a specialized role in repressing transposons in accessible chromatin environments and that the bulk of heterochromatin is incompatible with small RNA production.


Assuntos
Metilação de DNA , DNA de Plantas/química , Zea mays/genética , Centrômero/metabolismo , Cromatina/metabolismo , Eucromatina/metabolismo , Inativação Gênica , Genoma de Planta , Heterocromatina/metabolismo , Histonas/metabolismo , RNA Interferente Pequeno/fisiologia
12.
Genome Res ; 23(4): 628-37, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23269663

RESUMO

Small RNA-mediated regulation of chromatin structure is an important means of suppressing unwanted genetic activity in diverse plants, fungi, and animals. In plants specifically, 24-nt siRNAs direct de novo methylation to repetitive DNA, both foreign and endogenous, in a process known as RNA-directed DNA methylation (RdDM). Many components of the de novo methylation machinery have been identified recently, including multiple RNA polymerases, but specific genetic features that trigger methylation remain poorly understood. By applying whole-genome bisulfite sequencing to maize, we found that transposons close to cellular genes (particularly within 1 kb of either a gene start or end) are strongly associated with de novo methylation, as evidenced both by 24-nt siRNAs and by methylation specifically in the CHH sequence context. In addition, we found that the major classes of transposons exhibited a gradient of CHH methylation determined by proximity to genes. Our results further indicate that intergenic chromatin in maize exists in two major forms that are distinguished based on proximity to genes-one form marked by dense CG and CHG methylation and lack of transcription, and one marked by CHH methylation and activity of multiple forms of RNA polymerase. The existence of the latter, which we call CHH islands, may have implications for how cellular gene expression could be coordinated with immediately adjacent transposon repression in a large genome with a complex organization of genes interspersed in a landscape of transposons.


Assuntos
Cromatina/genética , Metilação de DNA , Componentes Genômicos , Zea mays/genética , Cromatina/metabolismo , Elementos de DNA Transponíveis , Genoma de Planta , RNA Interferente Pequeno/genética , Zea mays/metabolismo
13.
PLoS Genet ; 8(12): e1003127, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23271981

RESUMO

Transposable elements (TEs) have the potential to act as controlling elements to influence the expression of genes and are often subject to heterochromatic silencing. The current paradigm suggests that heterochromatic silencing can spread beyond the borders of TEs and influence the chromatin state of neighboring low-copy sequences. This would allow TEs to condition obligatory or facilitated epialleles and act as controlling elements. The maize genome contains numerous families of class I TEs (retrotransposons) that are present in moderate to high copy numbers, and many are found in regions near genes, which provides an opportunity to test whether the spreading of heterochromatin from retrotransposons is prevalent. We have investigated the extent of heterochromatin spreading into DNA flanking each family of retrotransposons by profiling DNA methylation and di-methylation of lysine 9 of histone 3 (H3K9me2) in low-copy regions of the maize genome. The effects of different retrotransposon families on local chromatin are highly variable. Some retrotransposon families exhibit enrichment of heterochromatic marks within 800-1,200 base pairs of insertion sites, while other families exhibit very little evidence for the spreading of heterochromatic marks. The analysis of chromatin state in genotypes that lack specific insertions suggests that the heterochromatin in low-copy DNA flanking retrotransposons often results from the spreading of silencing marks rather than insertion-site preferences. Genes located near TEs that exhibit spreading of heterochromatin tend to be expressed at lower levels than other genes. Our findings suggest that a subset of retrotransposon families may act as controlling elements influencing neighboring sequences, while the majority of retrotransposons have little effect on flanking sequences.


Assuntos
Regulação da Expressão Gênica de Plantas , Heterocromatina/genética , Retroelementos/genética , Zea mays/genética , Sequência de Bases , Metilação de DNA/genética , Inativação Gênica , Genoma de Planta , Histonas/genética , Histonas/metabolismo , Análise de Sequência de DNA , Zea mays/metabolismo
14.
Genome Res ; 21(2): 265-75, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177965

RESUMO

We have used a combination of three high-throughput RNA capture and sequencing methods to refine and augment the transcriptome map of a well-studied genetic model, Caenorhabditis elegans. The three methods include a standard (non-directional) library preparation protocol relying on cDNA priming and foldback that has been used in several previous studies for transcriptome characterization in this species, and two directional protocols, one involving direct capture of single-stranded RNA fragments and one involving circular-template PCR (CircLigase). We find that each RNA-seq approach shows specific limitations and biases, with the application of multiple methods providing a more complete map than was obtained from any single method. Of particular note in the analysis were substantial advantages of CircLigase-based and ssRNA-based capture for defining sequences and structures of the precise 5' ends (which were lost using the double-strand cDNA capture method). Of the three methods, ssRNA capture was most effective in defining sequences to the poly(A) junction. Using data sets from a spectrum of C. elegans strains and stages and the UCSC Genome Browser, we provide a series of tools, which facilitate rapid visualization and assignment of gene structures.


Assuntos
Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Éxons/genética , Masculino , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Polirribossomos/genética , Sinais de Poliadenilação na Ponta 3' do RNA/genética , Análise de Sequência de RNA , Trans-Splicing/genética
15.
Nucleic Acids Res ; 40(4): 1550-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22058126

RESUMO

Both kinetochore function and sister chromatid cohesion can depend upon pericentromere chromatin structure, and factors associated with heterochromatin have been proposed to have general, conserved roles in distinguishing centromeres and pericentromeres and in conferring pericentromere-intrinsic functions. We applied genome-wide sequencing approaches to quantify RNA expression, DNA methylation and histone modification distributions in maize (Zea mays), focusing on two maize chromosomes with nearly fully sequenced centromeres and pericentromeres. Aside from the presence of the Histone H3 variant common to all centromeres, Centromeric Histone H3 (CENH3), we found no RNA expression or chromatin modifications that clearly differentiate pericentromeres from either centromeres or from chromosome arms, nor did we identify an epigenetic signature that accurately predicts CENH3 location. RNA expression and chromatin modification frequencies were broadly associated with distance from centromeres, gradually peaking or dipping toward arms. When interpreted in the context of experimental data from other systems, our results suggest that centromeres may confer essential functions (such as cohesion retention) to flanking sequence regardless of the local heterochromatin profile.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Histonas/metabolismo , RNA Interferente Pequeno/metabolismo , Zea mays/genética , Cromossomos de Plantas/metabolismo , Eucromatina/metabolismo , RNA Mensageiro/metabolismo , Zea mays/metabolismo
16.
Plant Direct ; 8(2): e567, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357415

RESUMO

Maize striate leaves2 (sr2) is a mutant that causes white stripes on leaves that has been used in mapping studies for decades though the underlying gene has not been identified. The sr2 locus has been previously mapped to small regions of normal chromosome 10 (N10) and a rearranged variant called abnormal chromosome 10 (Ab10). A comparison of assembled genomes carrying N10 and Ab10 revealed only five candidate sr2 genes. Analysis of a stock carrying the sr2 reference allele (sr2-ref) showed that one of the five genes has a transposon insertion that disrupts its protein sequence and has a severe reduction in mRNA. An independent Mutator transposon insertion in the gene (sr2-Mu) failed to complement the sr2-ref mutation, and plants homozygous for sr2-Mu showed white striped leaf margins. The sr2 gene encodes a DUF3732 protein with strong homology to a rice gene with a similar mutant phenotype called young seedling stripe1 (yss1). These and other published data suggest that sr2 may have a function in plastid gene expression.

17.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405940

RESUMO

Although DNA methylation primarily represses transposable elements (TEs) in plants, it also represses select endosperm and pollen genes. These genes, or their cis-regulatory elements, are methylated in plant body tissues but are demethylated by DNA glycosylases (DNGs) in endosperm and pollen, enabling their transcription. Activity of either one of two DNGs, MDR1 or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen segregating mutations in both genes, we identified 58 candidate DNG target genes, whose expression is strongly decreased in double mutant pollen (124-fold decrease on average). These genes account for 11.1% of the wild-type pollen polyadenylated transcriptome, but they are silent or barely detectable in the plant body. They are unusual in their tendency to lack introns but even more so in their having TE-like methylation in their coding DNA sequence. Moreover, they are strongly enriched for predicted functions in cell wall modification. While some may support development of the pollen grain cell wall, expansins and pectinases in this set of genes suggest a function in cell wall loosening to support the rapid tip growth characteristic of pollen tubes as they carry the sperm cells through maternal apoplast and extracellular matrix of the pistil. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with potential for extremely high expression in pollen but constitutive silencing elsewhere.

18.
Genetics ; 225(2)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37556604

RESUMO

DNA methylation in plants is depleted from cis-regulatory elements in and near genes but is present in some gene bodies, including exons. Methylation in exons solely in the CG context is called gene body methylation (gbM). Methylation in exons in both CG and non-CG contexts is called TE-like methylation (teM). Assigning functions to both forms of methylation in genes has proven to be challenging. Toward that end, we utilized recent genome assemblies, gene annotations, transcription data, and methylome data to quantify common patterns of gene methylation and their relations to gene expression in maize. We found that gbM genes exist in a continuum of CG methylation levels without a clear demarcation between unmethylated genes and gbM genes. Analysis of expression levels across diverse maize stocks and tissues revealed a weak but highly significant positive correlation between gbM and gene expression except in endosperm. gbM epialleles were associated with an approximately 3% increase in steady-state expression level relative to unmethylated epialleles. In contrast to gbM genes, which were conserved and were broadly expressed across tissues, we found that teM genes, which make up about 12% of genes, are mainly silent, are poorly conserved, and exhibit evidence of annotation errors. We used these data to flag teM genes in the 26 NAM founder genome assemblies. While some teM genes are likely functional, these data suggest that the majority are not, and their inclusion can confound the interpretation of whole-genome studies.

19.
Nat Plants ; 9(3): 433-441, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928774

RESUMO

Centromeres are long, often repetitive regions of genomes that bind kinetochore proteins and ensure normal chromosome segregation. Engineering centromeres that function in vivo has proven to be difficult. Here we describe a tethering approach that activates functional maize centromeres at synthetic sequence arrays. A LexA-CENH3 fusion protein was used to recruit native Centromeric Histone H3 (CENH3) to long arrays of LexO repeats on a chromosome arm. Newly recruited CENH3 was sufficient to organize functional kinetochores that caused chromosome breakage, releasing chromosome fragments that were passed through meiosis and into progeny. Several fragments formed independent neochromosomes with centromeres localized over the LexO repeat arrays. The new centromeres were self-sustaining and transmitted neochromosomes to subsequent generations in the absence of the LexA-CENH3 activator. Our results demonstrate the feasibility of using synthetic centromeres for karyotype engineering applications.


Assuntos
Centrômero , Zea mays , Zea mays/genética , Zea mays/metabolismo , Centrômero/genética , Cinetocoros/metabolismo , Histonas/metabolismo , Ciclo Celular
20.
Sci Adv ; 7(4)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523932

RESUMO

The production of haploids is an important first step in creating many new plant varieties. One approach used in Arabidopsis involves crossing plants expressing different forms of centromeric histone H3 (CENP-A/CENH3) and subsequent loss of genome with weaker centromeres. However, the method has been ineffective in crop plants. Here, we describe a greatly simplified method based on crossing maize lines that are heterozygous for a cenh3 null mutation. Crossing +/cenh3 to wild-type plants in both directions yielded haploid progeny. Genome elimination was determined by the cenh3 genotype of the gametophyte, suggesting that centromere failure is caused by CENH3 dilution during the postmeiotic cell divisions that precede gamete formation. The cenh3 haploid inducer works as a vigorous hybrid and can be transferred to other lines in a single cross, making it versatile for a variety of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA