Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biophys J ; 121(5): 793-807, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077666

RESUMO

IQGAP1 is a multidomain scaffold protein that coordinates the direction and impact of multiple signaling pathways by scaffolding its various binding partners. However, the spatial and temporal resolution of IQGAP1 scaffolding remains unclear. Here, we use fluorescence imaging and correlation methods that allow for real-time live-cell changes in IQGAP1 localization and complex formation during signaling. We find that IQGAP1 and PIPKIγ interact on both the plasma membrane and in cytosol. Epidermal growth factor (EGF) stimulation, which can initiate cytoskeletal changes, drives the movement of the cytosolic pool toward the plasma membrane to promote cytoskeletal changes. We also observe that a significant population of cytosolic IQGAP1-PIPKIγ complexes localize to early endosomes, and in some instances form aggregated clusters which become highly mobile upon EGF stimulation. Our imaging studies show that PIPKIγ and PI3K bind simultaneously to IQGAP1, which may accelerate conversion of PI4P to PI(3,4,5)P3 that is required for cytoskeletal changes. Additionally, we find that IQGAP1 is responsible for PIPKIγ association with two proteins associated with cytoskeletal changes, talin and Cdc42, during EGF stimulation. These results directly show that IQGAP1 provides a physical link between phosphoinositides (through PIPKIγ), focal adhesion formation (through talin), and cytoskeletal reorganization (through Cdc42) upon EGF stimulation. Taken together, our results support the importance of IQGAP1 in regulating cell migration by linking phosphoinositide lipid signaling with cytoskeletal reorganization.


Assuntos
Fator de Crescimento Epidérmico , Talina , Fator de Crescimento Epidérmico/farmacologia , Fosfatidilinositóis , Proteínas Ativadoras de ras GTPase/metabolismo
2.
Biophys J ; 114(1): 126-136, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320679

RESUMO

The phosphoinositide, phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), is a key signaling lipid in the inner leaflet of the cell plasma membrane, regulating diverse signaling pathways including cell growth and migration. In this study we investigate the impact of the hydrogen-bond donor lipids phosphatidylethanolamine (PE) and phosphatidylinositol (PI) on the charge and phase behavior of PI(3,4,5)P3. PE and PI can interact with PI(3,4,5)P3 through hydrogen-bond formation, leading to altered ionization behavior and charge distribution within the PI(3,4,5)P3 headgroup. We quantify the altered PI(3,4,5)P3 ionization behavior using a multistate ionization model to obtain micro-pKa values for the ionization of each phosphate group. The presence of PE leads to a decrease in the pKa values for the initial deprotonation of PI(3,4,5)P3, which describes the removal of the first proton of the three protons remaining at the phosphomonoester groups at pH 4.0. The decrease in these micro-pKa values thus leads to a higher charge at low pH. Additionally, the charge distribution changes lead to increased charge on the 3- and 5-phosphates. In the presence of PI, the final deprotonation of PI(3,4,5)P3 is delayed, leading to a lower charge at high pH. This is due to a combination of hydrogen-bond formation between PI and PI(3,4,5)P3, and increased surface charge due to the addition of the negatively charged PI. The interaction between PI and PI(3,4,5)P3 leads to the formation of PI and PI(3,4,5)P3-enriched domains within the membrane. These domains may have a critical impact on PI(3,4,5)P3-signaling. We also reevaluate results for all phosphatidylinositol bisphosphates as well as for PI(4,5)P2 in complex lipid mixtures with the multistate ionization model.


Assuntos
Fosfatos de Fosfatidilinositol/química , Ligação de Hidrogênio , Lipossomas Unilamelares/química
3.
Methods ; 77-78: 125-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25697761

RESUMO

PTEN, a tumor suppressor protein that dephosphorylates phosphoinositides at the 3-position of the inositol ring, is a cytosolic protein that needs to associate with the plasma membrane or other subcellular membranes to exert its lipid phosphatase function. Upon membrane association PTEN interacts with at least three different lipid entities: An anionic lipid that is present in sufficiently high concentration to create a negative potential that allows PTEN to interact electrostatically with the membrane, phosphatidylinositol-4,5-bisphosphate, which interacts with PTEN's N-terminal end and the substrate, usually phosphatidylinositol-3,4,5-trisphosphate. Many parameters influence PTEN's interaction with the lipid bilayer, for example, the lateral organization of the lipids or the presence of other chemical species like cholesterol or other lipids. To investigate systematically the different steps of PTEN's complex binding mechanism and to explore its dynamic behavior in the membrane bound state, in vitro methods need to be employed that allow for a systematic variation of the experimental conditions. In this review we survey a variety of methods that can be used to assess PTEN lipid binding affinity, the dynamics of its membrane association as well as its dynamic behavior in the membrane bound state.


Assuntos
Fenômenos Biofísicos/fisiologia , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Humanos , Ligação Proteica/fisiologia
4.
Connect Tissue Res ; 55 Suppl 1: 134-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158198

RESUMO

Dentin phosphoprotein (DPP) is a protein expressed mainly in dentin and to a lesser extent in bone. DPP has a disordered structure, rich in glutamic acid, aspartic acid and phosphorylated serine/threonine residues. It has a high capacity for binding to calcium ions and to hydroxyapatite (HA) crystal surfaces. We used molecular dynamics (MD) simulations as a method for virtually screening interactions between DPP motifs and HA. The goal was to determine which motifs are absorbed to HA surfaces. For these simulations, we considered five peptides from the human DPP sequence. All-atom MD simulations were performed using GROMACS, the peptides were oriented parallel to the {100} HA crystal surface, the distance between the HA and the peptide was 3 nm. The system was simulated for 20 ns. Preliminary results show that for the unphosphorylated peptides, the acidic amino acids present an electrostatic attraction where their side chains are oriented towards HA. This attraction, however, is slow to facilitate bulk transport to the crystal surface. On the other hand, the phosphorylated (PP) peptides are rapidly absorbed on the surface of the HA with their centers of mass closer to the HA surface. More importantly, the root mean square fluctuation (RMSF) indicates that the average structures of the phosphorylated peptides are very inflexible and elongate, while that of the unphosphorylated peptides are flexible. Radius of gyration (Rg) analysis showed the compactness of un-phosphorylated peptides is lower than phosphorylated peptides. Phosphorylation of the DPP peptides is necessary for binding to HA surfaces.


Assuntos
Durapatita/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Sequência de Aminoácidos , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Estrutura Terciária de Proteína
5.
Chem Phys Lipids ; 264: 105424, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098579

RESUMO

As key mediators in a wide array of signaling events, phosphoinositides (PIPs) orchestrate the recruitment of proteins to specific cellular locations at precise moments. This intricate spatiotemporal regulation of protein activity often necessitates the localized enrichment of the corresponding PIP. We investigate the extent and thermal stabilities of phosphatidylinositol-4-phosphate (PI(4)P), phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2 and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) clusters with calcium and magnesium ions. We observe negligible or minimal clustering of all examined PIPs in the presence of Mg2+ ions. While PI(4)P shows in the presence of Ca2+ no clustering, PI(4,5)P2 forms with Ca2+ strong clusters that exhibit stablity up to at least 80°C. The extent of cluster formation for the interaction of PI(3,4,5)P3 with Ca2+ is less than what was observed for PI(4,5)P2, yet we still observe some clustering up to 80°C. Given that cholesterol has been demonstrated to enhance PIP clustering, we examined whether bivalent cations and cholesterol synergistically promote PIP clustering. We found that the interaction of Mg2+ or Ca2+ with PI(4)P remains extraordinarily weak, even in the presence of cholesterol. In contrast, we observe synergistic interaction of cholesterol and Ca2+ with PI(4,5)P2. Also, in the presence of cholesterol, the interaction of Mg2+ with PI(4,5)P2 remains weak. PI(3,4,5)P3 does not show strong clustering with cholesterol for the experimental conditions of our study and the interaction with Ca2+ and Mg2+ was not influenced by the presence of cholesterol.

7.
Adv Exp Med Biol ; 991: 85-104, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23775692

RESUMO

PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) is a relatively common anionic lipid that regulates cellular functions by multiple mechanisms. Hydrolysis of PtdIns(4,5)P2 by phospholipase C yields inositol trisphosphate and diacylglycerol. Phosphorylation by phosphoinositide 3-kinase yields PtdIns(3,4,5)P3, which is a potent signal for survival and proliferation. Also, PtdIns(4,5)P2 can bind directly to integral and peripheral membrane proteins. As an example of regulation by PtdIns(4,5)P2, we discuss phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in detail. PTEN is an important tumor suppressor and hydrolyzes PtdIns(3,4,5)P3. PtdIns(4,5)P2 enhances PTEN association with the plasma membrane and activates its phosphatase activity. This is a critical regulatory mechanism, but a detailed description of this process from a structural point of view is lacking. The disordered lipid bilayer environment hinders structural determinations of membrane-bound PTEN. A new method to analyze membrane-bound protein measures neutron reflectivity for proteins bound to tethered phospholipid membranes. These methods allow determination of the orientation and shape of membrane-bound proteins. In combination with molecular dynamics simulations, these studies will provide crucial structural information that can serve as a foundation for our understanding of PTEN regulation in normal and pathological processes.


Assuntos
PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Transdução de Sinais/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular , Humanos , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , PTEN Fosfo-Hidrolase/análise , PTEN Fosfo-Hidrolase/química , Fosfatidilinositol 4,5-Difosfato/análise
8.
J Phys Chem B ; 124(7): 1183-1196, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31994887

RESUMO

Numerous cellular functions mediated by phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2; PIP2) involve clustering of the lipid as well as colocalization with other lipids. Although the cation-mediated electrostatic interaction is regarded as the primary clustering mechanism, the ion-specific nature of the intermolecular network formation makes it challenging to characterize the clusters. Here we use all-atom molecular dynamics (MD) simulations of PIP2 monolayers and graph-theoretic analysis to gain insight into the phenomenon. MD simulations reveal that the intermolecular interactions preferentially occur between specific cations and phosphate groups (P1, P4, and P5) of the inositol headgroup with better-matched kosmotropic/chaotropic characters consistent with the law of matching water affinities (LMWA). Ca2+ is strongly attracted to P4/P5, while K+ preferentially binds to P1; Na+ interacts with both P4/P5 and P1. These specific interactions lead to the characteristic clustering patterns. Specificially, the size distributions and structures of PIP2 clusters generated by kosmotropic cations Ca2+ and Na+ are bimodal, with a combination of small and large clusters, while there is little clustering in the presence of only chaotropic K+; the largest clusters are obtained in systems with all three cations. The small-world network (a model with both local and long-range connections) best characterizes the clusters, followed by the random and the scale-free networks. More generally, the present results interpreted within the LMWA are consistent with the relative eukaryotic intracellular concentrations Ca2+ ≪ Na+ < Mg2+ < K+; that is, concentrations of Ca2+ and Na+ must be low to prevent damaging aggregation of lipids, DNA, RNA and phosphate-containing proteins.


Assuntos
Fosfatidilinositol 4,5-Difosfato/química , Análise por Conglomerados , Simulação de Dinâmica Molecular , Eletricidade Estática
9.
Biophys J ; 96(6): 2204-15, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19289047

RESUMO

Ceramide-1-phosphate, the phosphorylated form of ceramide, gained attention recently due to its diverse intracellular roles, in particular in inflammation mediated by cPLA(2)alpha. However, surprisingly little is known about the physical chemical properties of this lipid and its potential impact on physiological function. For example, the presence of Ca(2+) is indispensable for the interaction of Cer-1-P with the C2 domain of cPLA(2)alpha. We report on the structure and morphology of Cer-1-P in monomolecular layers at the air/water solution interface in the absence and presence of Ca(2+) using diverse biophysical techniques, including synchrotron x-ray reflectivity and grazing angle diffraction, to gain insight into the role and function of Cer-1-P in biomembranes. We show that relatively small changes in pH and the presence of monovalent cations dramatically affect the behavior of Cer-1-P. On pure water Cer-1-P forms a solid monolayer despite the negative charge of the phosphomonoester headgroup. In contrast, pH 7.2 buffer yields a considerably less solid-like monolayer, indicating that charge-charge repulsion becomes important at higher pH. Calcium was found to bind strongly to the headgroup of Cer-1-P even in the presence of a 100-fold larger Na(+) concentration. Analysis of the x-ray reflectivity data allowed us to estimate how much Ca(2+) is bound to the headgroup, approximately 0.5 Ca(2+) and approximately 1.0 Ca(2+) ions per Cer-1-P molecule for the water and buffer subphase respectively. These results can be qualitatively understood based on the molecular structure of Cer-1-P and the electrostatic/hydrogen-bond interactions of its phosphomonoester headgroup. Biological implications of our results are also discussed.


Assuntos
Cálcio/química , Ceramidas/química , Ar , Algoritmos , Elasticidade , Concentração de Íons de Hidrogênio , Pressão , Espalhamento de Radiação , Sódio/química , Síncrotrons , Água/química , Raios X
10.
Biochemistry ; 48(40): 9360-71, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19725516

RESUMO

Phosphatidylinositol polyphosphate lipids (phosphoinositides) form only a minor pool of membrane phospholipids but are involved in many intracellular signaling processes, including membrane trafficking, cytoskeletal remodeling, and receptor signal transduction. Phosphoinositide properties are largely determined by the characteristics of their headgroup, which at physiological pH is highly charged but also capable of forming hydrogen bonds. Many proteins have developed special binding domains that facilitate specific binding to particular phosphoinositides, while other proteins interact with phosphoinositides via nonspecific electrostatic interactions. Despite its importance, only limited information is available about the ionization properties of phosphoinositides. We have investigated the pH-dependent ionization behavior of all three naturally occurring phosphatidylinositol bisphosphates as well as of phosphatidylinositol 3,4,5-trisphosphate in mixed phosphoinositide/phosphatidylcholine vesicles using magic angle spinning (31)P NMR spectroscopy. For phosphatidylinositol 3,5-bisphosphate, where the two phosphomonoester groups are separated by a hydroxyl group at the 4-position, the pH-dependent chemical shift variation can be fitted with a Henderson-Hasselbalch-type formalism, yielding pK(a)(2) values of 6.96 +/- 0.04 and 6.58 +/- 0.04 for the 3- and 5-phosphates, respectively. In contrast, phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] as well as phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] show a biphasic pH-dependent ionization behavior that cannot be explained by a Henderson-Hasselbalch-type formalism. This biphasic behavior can be attributed to the sharing of the last remaining proton between the vicinal phosphomonoester groups. At pH 7.0, the overall charge (including the phosphodiester group charge) is found to be -3.96 +/- 0.10 for PI(3,4)P(2) and -3.99 +/- 0.10 for PI(4,5)P(2). While for PI(3,5)P(2) and PI(4,5)P(2) the charges of the individual phosphate groups in the molecule differ, they are equal for PI(3,4)P(2). Differences in the charges of the phosphomonoester groups can be rationalized on the basis of the ability of the respective phosphomonoester group to form intramolecular hydrogen bonds with adjacent hydroxyl groups. Phosphatidylinositol 3,4,5-trisphosphate shows an extraordinary complex ionization behavior. While at pH 4 the (31)P NMR peak of the 4-phosphate is found downfield from the other two phosphomonoester group peaks, an increase in pH leads to a crossover of the 4-phosphate, which positions this peak eventually upfield from the other two peaks. As a result, the 4-phosphate group shows a significantly lower charge at pH values between 7 and 9.5 than the other two phosphomonoester groups. The charge of the respective phosphomonoester group in PI(3,4,5)P(3) is lower than the corresponding charge of the phosphatidylinositol bisphosphate phosphomonoester groups, leading to an overall charge of PI(3,4,5)P(3) of -5.05 +/- 0.15 at pH 7.0. The charge of all investigated phosphoinositides at pH 7.0 is equal or higher than the corresponding charge of soluble inositol polyphosphate headgroup analogues, which is the opposite of what is expected on the basis of simple electrostatic considerations. This higher than expected headgroup charge can be rationalized with mutual intermolecular hydrogen bond formation. Measurements using different concentrations of PI(4,5)P(2) in the lipid vesicles (1, 5, and 20 mol %) did not reveal any significant concentration-dependent shift of the two phosphomonoester peaks, suggesting that PI(4,5)P(2) is clustered even at 1 mol %.


Assuntos
Modelos Químicos , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Animais , Química Encefálica , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Íons/química , Íons/metabolismo , Espectroscopia de Ressonância Magnética , Micelas , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosforilação , Prótons , Suínos
11.
Biophys J ; 94(11): 4320-30, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18296489

RESUMO

Ceramide-1-phosphate (Cer-1-P), one of the simplest of all sphingophospholipids, occurs in minor amounts in biological membranes. Yet recent evidence suggests important roles of this lipid as a novel second messenger with crucial tasks in cell survival and inflammatory responses. We present a detailed description of the physical chemistry of this hitherto little explored membrane lipid. At full hydration Cer-1-P forms a highly organized subgel (crystalline) bilayer phase (L(c)) at low temperature, which transforms into a regular gel phase (L(beta)) at approximately 45 degrees C, with the gel to fluid phase transition (L(beta)-L(alpha)) occurring at approximately 65 degrees C. When incorporated at 5 mol % in a phosphatidylcholine bilayer, the pK(a2) of Cer-1-P, 7.39 +/- 0.03, lies within the physiological pH range. Inclusion of phosphatidylethanolamine in the phosphatidylcholine bilayer, at equimolar ratio, dramatically reduces the pK(a2) to 6.64 +/- 0.03. We explain these results in light of the novel electrostatic/hydrogen bond switch model described recently for phosphatidic acid. In mixtures with dielaidoylphosphatidylethanolamine, small concentrations of Cer-1-P cause a large reduction of the lamellar-to-inverted hexagonal phase transition temperature, suggesting that Cer-1-P induces, like phosphatidic acid, negative membrane curvature in these types of lipid mixtures. These properties place Cer-1-P in a class more akin to certain glycerophospholipids (phosphatidylethanolamine, phosphatidic acid) than to any other sphingolipid. In particular, the similarities and differences between ceramide and Cer-1-P may be relevant in explaining some of their physiological roles.


Assuntos
Ceramidas/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Modelos Químicos , Modelos Moleculares , Fosfolipídeos/química , Simulação por Computador , Íons , Transição de Fase , Eletricidade Estática
13.
Chem Phys Lipids ; 210: 109-121, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102758

RESUMO

This work describes a method that utilizes a microfluidic gradient generator to develop lateral lipid gradients in supported lipid bilayers (SLB). The new methodology provides freedom of choice with respect to the lipid composition of the SLB. In addition, the device has the ability to create a protein or bivalent cation gradient in the aqueous phase above the lipid bilayer which can elicit a gradient specific response in the SLB. To highlight these features we demonstrate that we can create a phosphoinositide gradient on various length scales, ranging from 2mm to 50µm. We further show that a Ca2+ gradient in the aqueous phase above the SLB causes anionic lipid clustering mirroring the cation gradient. We demonstrate this effect for mixed phosphatidylcholine/phosphatidylinositol-4,5-bisphosphate bilayers and fora mixed phosphatidylcholine/phosphatidylserine bilayers. The biomimetic platform can be combined with a Total Internal Reflection Fluorescence (TIRF) microscopy setup, which allows for the convenient observation of the time evolution of the gradient and the interaction of ligands with the lipid bilayer. The method provides unprecedented access to study the dynamics and mechanics of protein-lipid interactions on membranes with micron level gradients, mimicking plasma membrane gradients observed in organisms such as Dictyostelium discodeum and neutrophils.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/isolamento & purificação , Técnicas Analíticas Microfluídicas , Lipídeos/química
14.
J Phys Chem B ; 122(4): 1484-1494, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293344

RESUMO

All-atom molecular dynamics simulations combined with graph-theoretic analysis reveal that clustering of monomethyl phosphate dianion (MMP2-) is strongly influenced by the types and combinations of cations in the aqueous solution. Although Ca2+ promotes the formation of stable and large MMP2- clusters, K+ alone does not. Nonetheless, clusters are larger and their link lifetimes are longer in mixtures of K+ and Ca2+. This "synergistic" effect depends sensitively on the Lennard-Jones interaction parameters between Ca2+ and the phosphorus oxygen and correlates with the hydration of the clusters. The pronounced MMP2- clustering effect of Ca2+ in the presence of K+ is confirmed by Fourier transform infrared spectroscopy. The characterization of the cation-dependent clustering of MMP2- provides a starting point for understanding cation-dependent clustering of phosphoinositides in cell membranes.


Assuntos
Cálcio/química , Gráficos por Computador , Simulação de Dinâmica Molecular , Organofosfatos/química , Potássio/química , Análise por Conglomerados , Íons/química , Soluções
16.
Bone ; 95: 65-75, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27810285

RESUMO

Dentin phosphoprotein (DPP) is the most acidic protein in vertebrates and structurally is classified as an intrinsically disordered protein. Functionally, DPP is related to dentin and bone formation, however the specifics of such association remain unknown. Here, we used atomistic molecular dynamics simulations to screen selected binding domains of DPP onto hydroxyapatite (HA), which is one of its important interacting partners. From these results, we selected a functionally relevant peptide, Ace-SSDSSDSSDSSDSSD-NH2 (named P5) and its phosphorylated form (named P5P), for experimental characterization. SAXS experiments indicated that in solution P5 was disordered, possibly in an extended conformation while P5P displayed more compact globular conformations. Circular dichroism and FTIR confirmed that, either in the presence or absence of Ca2+/HA, P5 adopts a random coil structure, whereas its phosphorylated counterpart, P5P, has a more compact arrangement associated with conformations that display ß-sheet and α-helix motifs when bound to HA. In solution, P5 inhibited HA crystal growth, whereas at similar concentrations, P5P stimulated it. These findings suggest that phosphorylation controls the transient formation of secondary and tertiary structure of DPP peptides, and, most likely of DPP itself, which in turn controls HA growth in solution and possibly HA growth in mineralized tissues.


Assuntos
Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Sialoglicoproteínas/química , Sialoglicoproteínas/metabolismo , Sequência de Aminoácidos , Calcificação Fisiológica , Dicroísmo Circular , Durapatita/química , Simulação de Dinâmica Molecular , Fosforilação , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
Gene ; 374: 1-9, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16675164

RESUMO

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a phosphatidylinositol phosphate phosphatase and is frequently inactivated in human cancers. The balance between phosphoinositide 3-kinase (PI3K) and PTEN determines PI(3,4,5)P3 levels. PI3K is regulated by a variety of intracellular and extracellular signals, but little is known about the regulation of PTEN. In this article, we review control of PTEN function by phosphorylation as well as by binding of lipid and protein partners.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos , PTEN Fosfo-Hidrolase/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína
18.
Beilstein J Nanotechnol ; 7: 236-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977381

RESUMO

Ceramide-1-phosphate (C1P) plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM), infrared reflection-absorption spectroscopy (IRRAS) and grazing incidence X-ray diffraction (GIXD). The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

19.
Structure ; 23(10): 1952-1957, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26299948

RESUMO

As the phosphoinositol-3-kinase antagonist in the PI3K pathway, the PTEN tumor suppressor exerts phosphatase activity on diacylphosphatidylinositol triphosphate in the plasma membrane. Even partial loss of this activity enhances tumorigenesis, but a mechanistic basis for this aspect of PTEN physiology has not yet been established. It was recently proposed that PTEN mutations have dominant-negative effects in cancer via PTEN dimers. We show that PTEN forms homodimers in vitro, and determine a structural model of the complex from SAXS and Rosetta docking studies. Our findings shed new light on the cellular control mechanism of PTEN activity. Phosphorylation of the unstructured C-terminal tail of PTEN reduces PTEN activity, and this result was interpreted as a blockage of the PTEN membrane binding interface through this tail. The results presented here instead suggest that the C-terminal tail functions in stabilizing the homodimer, and that tail phosphorylation interferes with this stabilization.


Assuntos
Membrana Celular/química , Simulação de Acoplamento Molecular , PTEN Fosfo-Hidrolase/química , Fosfatos de Fosfatidilinositol/química , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Chem Phys Lipids ; 182: 62-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24309195

RESUMO

Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) is an important signaling lipid and plays a crucial role in a wide variety of cellular processes by interacting with protein targets and localizing proteins at the plasma membrane. These interactions are strongly influenced by the lateral distribution of PI(4,5)P2 as well as its ionization state. The characterization of the PI(4,5)P2 ionization state provides important information about how PI(4,5)P2 interacts with other membrane resident or associated chemical species. In this study we have used solid-state MAS (31)P NMR to investigate the interactions of PI(4,5)P2 with potential cluster promoting agents, divalent cations and cholesterol. Both Ca(2+) and cholesterol were found previously to promote formation of local PI(4,5)P2 clusters in vitro. The NMR approach allows us to probe independently the ionization state of PI(4,5)P2 two phosphomonoester groups. We investigated mixed phosphatidylcholine (PC)/PI(4,5)P2 multilamellar vesicles in the presence of micro and millimolar concentrations of Ca(2+) and Mg(2+). We found that both cations lead to an increased downfield chemical shift of the PI(4,5)P2 phosphomonoester peaks, indicating an increased ionization in the presence of the divalent cations. Ca(2+) has a much larger effect on PI(4,5)P2 as compared to Mg(2+) at similar concentrations. Physiological concentrations of Ca(2+) are significantly lower than those found for Mg(2+) and the comparison of the PI(4,5)P2 ionization in the presence of Ca(2+) and Mg(2+) at physiological concentrations resulted in similar charges of the phosphomonoester groups for both cations. PI(4,5)P2 was also examined with vesicles containing cholesterol since cholesterol has been shown to promote PI(4,5)P2 clustering. In the presence of 40 mol% cholesterol, the PI(4,5)P2 phosphomonoester (31)P NMR peaks shifted slightly downfield, indicating a small increase in charge. Previously published data suggest that PI(4,5)P2 is capable of forming an intra- and intermolecular hydrogen bond network, which leads to a reduction of the charge at the phosphomonoester groups through dissipation of the charge across the bilayer/water interface. We hypothesize that cholesterol participates in this intermolecular hydrogen bond network, resulting in a stabilization of PI(4,5)P2 enriched domains due an increased spacing between the PI(4,5)P2 headgroup. We also examined the cumulative effects of cholesterol combined with the divalent cations, phosphatidylethanolamine (PE), and phosphatidylinositol (PI), separately. The combination of cholesterol and divalent cations results in an additive effect on PI(4,5)P2 ionization, while the effect of cholesterol on PI(4,5)P2 ionization is reduced in the presence of PE or PI.


Assuntos
Cálcio/farmacologia , Colesterol/farmacologia , Magnésio/farmacologia , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Cálcio/metabolismo , Colesterol/metabolismo , Magnésio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA