Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900938

RESUMO

Obesity is associated with increased incidence and metastasis of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype. The extracellular matrix (ECM) is a major component of the tumor microenvironment that drives metastasis. To characterize the temporal effects of age and high-fat diet-driven weight gain on the ECM, we injected allograft tumor cells at 4-week intervals into mammary fat pads of mice fed a control or high-fat diet (HFD), assessing tumor growth and metastasis and evaluating the ECM composition of the mammary fat pads, lungs, and livers. Tumor growth was increased in obese mice after 12 weeks on the HFD. Liver metastasis increased in obese mice only at 4 weeks, and elevated body weight correlated with increased metastasis to the lungs but not the liver. Whole decellularized ECM coupled with proteomics indicated that early stages of obesity were sufficient to induce changes in the ECM composition. Obesity led to increased abundance of the pro-invasive ECM proteins collagen IV and collagen VI in the mammary glands and enhanced the invasive capacity of cancer cells. Cells of stromal vascular fraction and adipose stem and progenitor cells were primarily responsible for secreting collagen IV and VI, not adipocytes. Longer exposure to HFD increased the invasive potential of ECM isolated from lung and liver, with significant changes in ECM composition found in the liver with short-term HFD exposure. Together, this data suggests that changes in the breast, lung, and liver ECM underlie some of the effects of obesity on TNBC incidence and metastasis.

2.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627156

RESUMO

High-grade serous ovarian cancer (HGSOC) is responsible for the majority of gynecology cancer-related deaths. Patients in remission often relapse with more aggressive forms of disease within 2 years post-treatment. Alternative immuno-oncology (IO) strategies, such as immune checkpoint blockade (ICB) targeting the PD-(L)1 signaling axis, have proven inefficient so far. Our aim is to utilize epigenetic modulators to maximize the benefit of personalized IO combinations in ex vivo 3D patient-derived platforms and in vivo syngeneic models. Using patient-derived tumor ascites, we optimized an ex vivo 3D screening platform (PDOTS), which employs autologous immune cells and circulating ascites-derived tumor cells, to rapidly test personalized IO combinations. Most importantly, patient responses to platinum chemotherapy and poly-ADP ribose polymerase inhibitors in 3D platforms recapitulate clinical responses. Furthermore, similar to clinical trial results, responses to ICB in PDOTS tend to be low and positively correlated with the frequency of CD3+ immune cells and EPCAM+/PD-L1+ tumor cells. Thus, the greatest response observed with anti-PD-1/anti-PD-L1 immunotherapy alone is seen in patient-derived HGSOC ascites, which present with high levels of systemic CD3+ and PD-L1+ expression in immune and tumor cells, respectively. In addition, priming with epigenetic adjuvants greatly potentiates ICB in ex vivo 3D testing platforms and in vivo tumor models. We further find that epigenetic priming induces increased tumor secretion of several key cytokines known to augment T and NK cell activation and cytotoxicity, including IL-6, IP-10 (CXCL10), KC (CXCL1), and RANTES (CCL5). Moreover, epigenetic priming alone and in combination with ICB immunotherapy in patient-derived PDOTS induces rapid upregulation of CD69, a reliable early activation of immune markers in both CD4+ and CD8+ T cells. Consequently, this functional precision medicine approach could rapidly identify personalized therapeutic combinations able to potentiate ICB, which is a great advantage, especially given the current clinical difficulty of testing a high number of potential combinations in patients.

3.
Microbiol Resour Announc ; 10(45): e0098621, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761957

RESUMO

We characterized the complete genome sequence of actinobacteriophage Yavru (Siphoviridae), a cluster FE bacteriophage infecting Arthrobacter globiformis NRRL B-2979; it was 89.5% identical to cluster FE phage Whytu, with a capsid width of 50 nm and a tail length of 90 nm. The genome was 15,193 bp in length, with 23 predicted protein-coding genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA