Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 66(2): 1380-1425, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36634346

RESUMO

We have developed compounds with a promising activity against Acinetobacter baumannii and Pseudomonas aeruginosa, which are both on the WHO priority list of antibiotic-resistant bacteria. Starting from DNA gyrase inhibitor 1, we identified compound 27, featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from A. baumannii and P. aeruginosa, a 10-fold decreased inhibition of human topoisomerase IIα, and no cross-resistance to novobiocin. Cocrystal structures of 1 in complex with Escherichia coli GyrB24 and (S)-27 in complex with A. baumannii GyrB23 and P. aeruginosa GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit. In further optimization steps, solubility, plasma free fraction, and other ADME properties of 27 were improved by fine-tuning of lipophilicity. In particular, analogs of 27 with retained anti-Gram-negative activity and improved plasma free fraction were identified. The series was found to be nongenotoxic, nonmutagenic, devoid of mitochondrial toxicity, and possessed no ion channel liabilities.


Assuntos
Acinetobacter baumannii , Inibidores da Topoisomerase II , Humanos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Pseudomonas aeruginosa/metabolismo , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/metabolismo , Benzotiazóis , Testes de Sensibilidade Microbiana , DNA Girase/metabolismo
2.
Clin Pharmacol Ther ; 109(4): 1063-1073, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33150591

RESUMO

Apramycin represents a subclass of aminoglycoside antibiotics that has been shown to evade almost all mechanisms of clinically relevant aminoglycoside resistance. Model-informed drug development may facilitate its transition from preclinical to clinical phase. This study explored the potential of pharmacokinetic/pharmacodynamic (PK/PD) modeling to maximize the use of in vitro time-kill and in vivo preclinical data for prediction of a human efficacious dose (HED) for apramycin. PK model parameters of apramycin from four different species (mouse, rat, guinea pig, and dog) were allometrically scaled to humans. A semimechanistic PK/PD model was developed from the rich in vitro data on four Escherichia coli strains and subsequently the sparse in vivo efficacy data on the same strains were integrated. An efficacious human dose was predicted from the PK/PD model and compared with the classical PK/PD index methodology and the aminoglycoside dose similarity. One-compartment models described the PK data and human values for clearance and volume of distribution were predicted to 7.07 L/hour and 26.8 L, respectively. The required fAUC/MIC (area under the unbound drug concentration-time curve over MIC ratio) targets for stasis and 1-log kill in the thigh model were 34.5 and 76.2, respectively. The developed PK/PD model predicted the efficacy data well with strain-specific differences in susceptibility, maximum bacterial load, and resistance development. All three dose prediction approaches supported an apramycin daily dose of 30 mg/kg for a typical adult patient. The results indicate that the mechanistic PK/PD modeling approach can be suitable for HED prediction and serves to efficiently integrate all available efficacy data with potential to improve predictive capacity.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Nebramicina/análogos & derivados , Animais , Antibacterianos/farmacocinética , Área Sob a Curva , Técnicas Bacteriológicas , Cães , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Cobaias , Camundongos , Modelos Biológicos , Nebramicina/administração & dosagem , Nebramicina/farmacocinética , Nebramicina/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA