Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(7): 076702, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867817

RESUMO

Antiferromagnetic materials feature intrinsic ultrafast spin dynamics, making them ideal candidates for future magnonic devices operating at THz frequencies. A major focus of current research is the investigation of optical methods for the efficient generation of coherent magnons in antiferromagnetic insulators. In magnetic lattices endowed with orbital angular momentum, spin-orbit coupling enables spin dynamics through the resonant excitation of low-energy electric dipoles such as phonons and orbital resonances which interact with spins. However, in magnetic systems with zero orbital angular momentum, microscopic pathways for the resonant and low-energy optical excitation of coherent spin dynamics are lacking. Here, we consider experimentally the relative merits of electronic and vibrational excitations for the optical control of zero orbital angular momentum magnets, focusing on a limit case: the antiferromagnet manganese phosphorous trisulfide (MnPS_{3}), constituted by orbital singlet Mn^{2+} ions. We study the correlation of spins with two types of excitations within its band gap: a bound electron orbital excitation from the singlet orbital ground state of Mn^{2+} into an orbital triplet state, which causes coherent spin precession, and a vibrational excitation of the crystal field that causes thermal spin disorder. Our findings cast orbital transitions as key targets for magnetic control in insulators constituted by magnetic centers of zero orbital angular momentum.

2.
Nano Lett ; 22(15): 6149-6155, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867517

RESUMO

We perform magnetotransport experiments on VI3 multilayers to investigate the relation between ferromagnetism in bulk and in exfoliated layers. The magnetoconductance measured on field-effect transistors and tunnel barriers shows that the Curie temperature of exfoliated multilayers is TC = 57 K, larger than in bulk (TC,bulk = 50 K). Below T ≈ 40 K, we observe an unusual evolution of the tunneling magnetoconductance, analogous to the phenomenology observed in bulk. Comparing the magnetoconductance measured for fields applied in- or out-of-plane corroborates the analogy, allows us to determine that the orientation of the easy-axis in multilayers is similar to that in bulk, and suggests that the in-plane component of the magnetization points in different directions in different layers. Besides establishing that the magnetic state of bulk and multilayers are similar, our experiments illustrate the complementarity of magnetotransport and magneto-optical measurements to probe magnetism in 2D materials.

3.
Nano Lett ; 22(16): 6760-6766, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35930625

RESUMO

We report experimental investigations of transport through bilayer graphene (BLG)/chromium trihalide (CrX3; X = Cl, Br, I) van der Waals interfaces. In all cases, a large charge transfer from BLG to CrX3 takes place (reaching densities in excess of 1013 cm-2), and generates an electric field perpendicular to the interface that opens a band gap in BLG. We determine the gap from the activation energy of the conductivity and find excellent agreement with the latest theory accounting for the contribution of the σ bands to the BLG dielectric susceptibility. We further show that for BLG/CrCl3 and BLG/CrBr3 the band gap can be extracted from the gate voltage dependence of the low-temperature conductivity, and use this finding to refine the gap dependence on the magnetic field. Our results allow a quantitative comparison of the electronic properties of BLG with theoretical predictions and indicate that electrons occupying the CrX3 conduction band are correlated.

4.
Nano Lett ; 20(2): 1322-1328, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31874038

RESUMO

The assembly of suitably designed van der Waals (vdW) heterostructures represents a new approach to produce artificial systems with engineered electronic properties. Here, we apply this strategy to realize synthetic semimetals based on vdW interfaces formed by two different semiconductors. Guided by existing ab initio calculations, we select WSe2 and SnSe2 mono- and multilayers to assemble vdW interfaces and demonstrate the occurrence of semimetallicity by means of different transport experiments. Semimetallicity manifests itself in a finite minimum conductance upon sweeping the gate over a large range in ionic liquid gated devices, which also offer spectroscopic capabilities enabling the quantitative determination of the band overlap. The semimetallic state is additionally revealed in Hall effect measurements by the coexistence of electrons and holes, observed by either looking at the evolution of the Hall slope with sweeping the gate voltage or with lowering temperature. Finally, semimetallicity results in the low-temperature metallic conductivity of interfaces of two materials that are themselves insulating. These results demonstrate the possibility to implement a state of matter that had not yet been realized in vdW interfaces and represent a first step toward using these interfaces to engineer topological or excitonic insulating states.

5.
Nano Lett ; 20(4): 2452-2459, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32142288

RESUMO

The magnetic state of atomically thin semiconducting layered antiferromagnets such as CrI3 and CrCl3 can be probed by forming tunnel barriers and measuring their resistance as a function of magnetic field (H) and temperature (T). This is possible because the spins within each individual layer are ferromagnetically aligned and the tunneling magnetoresistance depends on the relative orientation of the magnetization in adjacent layers. The situation is different for systems that are antiferromagnetic within the layers in which case it is unclear whether magnetoresistance measurements can provide information about the magnetic state. Here, we address this issue by investigating tunnel transport through atomically thin crystals of MnPS3, a van der Waals semiconductor that in the bulk exhibits easy-axis antiferromagnetic order within the layers. For thick multilayers below T ∼ 78 K, a T-dependent magnetoresistance sets in at µ0H ∼ 5 T and is found to track the boundary between the antiferromagnetic and the spin-flop phases known from bulk measurements. We show that the magnetoresistance persists as thickness is reduced with nearly unchanged characteristic temperature and magnetic field scales, albeit with a different dependence on H, indicating the persistence of magnetism in the ultimate limit of individual monolayers.

6.
Nano Lett ; 19(1): 554-560, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30570259

RESUMO

Two-dimensional crystals of semi-metallic van der Waals materials hold much potential for the realization of novel phases, as exemplified by the recent discoveries of a polar metal in few-layer 1T'-WTe2 and of a quantum spin Hall state in monolayers of the same material. Understanding these phases is particularly challenging because little is known from experiments about the momentum space electronic structure of ultrathin crystals. Here, we report direct electronic structure measurements of exfoliated mono-, bi-, and few-layer 1T'-WTe2 by laser-based microfocus angle-resolved photoemission. This is achieved by encapsulating with monolayer graphene a flake of WTe2 comprising regions of different thickness. Our data support the recent identification of a quantum spin Hall state in monolayer 1T'-WTe2 and reveal strong signatures of the broken inversion symmetry in the bilayer. We finally discuss the sensitivity of encapsulated samples to contaminants following exposure to ambient atmosphere.

7.
Phys Rev Lett ; 117(17): 176601, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824454

RESUMO

We report the direct observation of a long-range field effect in WTe_{2} devices, leading to large gate-induced changes of transport through crystals much thicker than the electrostatic screening length. The phenomenon-which manifests itself very differently from the conventional field effect-originates from the nonlocal nature of transport in the devices that are thinner than the carrier mean free path. We reproduce theoretically the gate dependence of the measured classical and quantum magnetotransport, and show that the phenomenon is caused by the gate tuning of the bulk carrier mobility by changing the scattering at the surface. Our results demonstrate experimentally the possibility to gate tune the electronic properties deep in the interior of conducting materials, avoiding limitations imposed by electrostatic screening.

8.
Nano Lett ; 15(4): 2336-42, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25803208

RESUMO

We study the evolution of the band gap structure in few-layer MoTe2 crystals, by means of low-temperature microreflectance (MR) and temperature-dependent photoluminescence (PL) measurements. The analysis of the measurements indicate that in complete analogy with other semiconducting transition metal dichalchogenides (TMDs) the dominant PL emission peaks originate from direct transitions associated with recombination of excitons and trions. When we follow the evolution of the PL intensity as a function of layer thickness, however, we observe that MoTe2 behaves differently from other semiconducting TMDs investigated earlier. Specifically, the exciton PL yield (integrated PL intensity) is identical for mono and bilayer, decreases slightly for trilayer, and it is significantly lower in the tetralayer. The analysis of this behavior and of all our experimental observations is fully consistent with mono and bilayer MoTe2 being direct band gap semiconductors with tetralayer MoTe2 being an indirect gap semiconductor and with trilayers having nearly identical direct and indirect gaps. This conclusion is different from the one reached for other recently investigated semiconducting transition metal dichalcogenides for which monolayers are found to be direct band gap semiconductors, and thicker layers have indirect band gaps that are significantly smaller (by hundreds of meV) than the direct gap. We discuss the relevance of our findings for experiments of fundamental interest and possible future device applications.

9.
Chimia (Aarau) ; 68(12): 893-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26508615

RESUMO

To celebrate the International Year of Crystallography among the general public, a consortium of chemists, physicists and crystallographers of the University of Geneva organised in Spring 2014 an incentive crystal growth contest for Geneva scholars aged 4 to 19. Starting from a kit containing a salt and user instructions, classes had to prepare a crystal that met specific criteria according to their category of age. The composition of the salt - potassium dihydrogen phosphate (KDP) - was only disclosed to the participants during the final Awards Ceremony. This contest positively exceeded our expectations with almost 100 participating classes (ca. 1800 participants) and 54 specimens received over all categories.

10.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931432

RESUMO

The SARS-CoV-2 infection has been associated with important mortality, particularly in immunocompromised patients, including solid organ transplant (SOT) recipients. Remdesivir (RDV) is an antiviral drug that has proven to be effective in reducing the replication of the virus in host cells, by which it may reduce the progression of symptoms and, consequently, the length of hospital stay and mortality. Randomized controlled trials have evaluated its use in the general population but never in SOT recipients. For the first time in this review, the safety and efficacy of RDV is evaluated in this specific population. The literature research was conducted using PubMed/MEDLINE and Scopus databases from 1 January 2020 to 24 November 2023, and 23 studies were analyzed. Although no clinical studies specifically evaluating this population have been conducted yet, RDV is likely safe for SOT patients when compared to the general population, so prescribers should consider utilizing RDV in SOT patients who are at high risk for progression to severe COVID-19. Future research will allow for the confirmation of the observed results and the acquisition of broader and clearer data regarding the safety and efficacy of the drug in this specific setting.

11.
Nat Commun ; 14(1): 4969, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591960

RESUMO

In twisted two-dimensional (2D) magnets, the stacking dependence of the magnetic exchange interaction can lead to regions of ferromagnetic and antiferromagnetic interlayer order, separated by non-collinear, skyrmion-like spin textures. Recent experimental searches for these textures have focused on CrI3, known to exhibit either ferromagnetic or antiferromagnetic interlayer order, depending on layer stacking. However, the very strong uniaxial anisotropy of CrI3 disfavors smooth non-collinear phases in twisted bilayers. Here, we report the experimental observation of three distinct magnetic phases-one ferromagnetic and two antiferromagnetic-in exfoliated CrBr3 multilayers, and reveal that the uniaxial anisotropy is significantly smaller than in CrI3. These results are obtained by magnetoconductance measurements on CrBr3 tunnel barriers and Raman spectroscopy, in conjunction with density functional theory calculations, which enable us to identify the stackings responsible for the different interlayer magnetic couplings. The detection of all locally stable magnetic states predicted to exist in CrBr3 and the excellent agreement found between theory and experiments, provide complete information on the stacking-dependent interlayer exchange energy and establish twisted bilayer CrBr3 as an ideal system to deterministically create non-collinear magnetic phases.

12.
Proc Natl Acad Sci U S A ; 105(51): 20161-6, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19095796

RESUMO

The mechanism of electron pairing in high-temperature superconductors is still the subject of intense debate. Here, we provide direct evidence of the role of structural dynamics, with selective atomic motions (buckling of copper-oxygen planes), in the anisotropic electron-lattice coupling. The transient structures were determined using time-resolved electron diffraction, following carrier excitation with polarized femtosecond heating pulses, and examined for different dopings and temperatures. The deformation amplitude reaches 0.5% of the c axis value of 30 A when the light polarization is in the direction of the copper-oxygen bond, but its decay slows down at 45 degrees. These findings suggest a selective dynamical lattice involvement with the anisotropic electron-phonon coupling being on a time scale (1-3.5 ps depending on direction) of the same order of magnitude as that of the spin exchange of electron pairing in the high-temperature superconducting phase.

13.
Nat Commun ; 12(1): 6659, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795253

RESUMO

Recent experiments on van der Waals antiferromagnets have shown that measuring the temperature (T) and magnetic field (H) dependence of the conductance allows their magnetic phase diagram to be mapped. Similarly, experiments on ferromagnetic CrBr3 barriers enabled the Curie temperature to be determined at H = 0, but a precise interpretation of the magnetoconductance data at H ≠ 0 is conceptually more complex, because at finite H there is no well-defined phase boundary. Here we perform systematic transport measurements on CrBr3 barriers and show that the tunneling magnetoconductance depends on H and T exclusively through the magnetization M(H, T) over the entire temperature range investigated. The phenomenon is reproduced by the spin-dependent Fowler-Nordheim model for tunneling, and is a direct manifestation of the spin splitting of the CrBr3 conduction band. Our analysis unveils a new approach to probe quantitatively different properties of atomically thin ferromagnetic insulators related to their magnetization by performing simple conductance measurements.

14.
Nat Commun ; 12(1): 6037, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654799

RESUMO

In the presence of multiple bands, well-known electronic instabilities may acquire new complexity. While multiband superconductivity is the subject of extensive studies, the possibility of multiband charge density waves (CDWs) has been largely ignored so far. Here, combining energy dependent scanning tunnelling microscopy (STM) topography with a simple model of the charge modulations and a self-consistent calculation of the CDW gap, we find evidence for a multiband CDW in 2H-NbSe2. This CDW not only involves the opening of a gap on the inner band around the K-point, but also on the outer band. This leads to spatially out-of-phase charge modulations from electrons on these two bands, which we detect through a characteristic energy dependence of the CDW contrast in STM images.

15.
Nat Nanotechnol ; 14(12): 1116-1122, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712666

RESUMO

Changes in the spin configuration of atomically thin, magnetic van der Waals multilayers can cause drastic modifications in their opto-electronic properties. Conversely, the opto-electronic response of these systems provides information about the magnetic state, which is very difficult to obtain otherwise. Here, we show that in CrCl3 multilayers, the dependence of the tunnelling conductance on applied magnetic field, temperature and number of layers tracks the evolution of the magnetic state, enabling the magnetic phase diagram to be determined experimentally. Besides a high-field spin-flip transition occurring for all thicknesses, the in-plane magnetoconductance exhibits an even-odd effect due to a low-field spin-flop transition. Through a quantitative analysis of the phenomena, we determine the interlayer exchange coupling as well as the layer magnetization and show that in CrCl3 shape anisotropy dominates. Our results reveal the rich behaviour of atomically thin layered antiferromagnets with weak magnetic anisotropy.

17.
Nat Commun ; 9(1): 2516, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955066

RESUMO

Magnetic layered van der Waals crystals are an emerging class of materials giving access to new physical phenomena, as illustrated by the recent observation of 2D ferromagnetism in Cr2Ge2Te6 and CrI3. Of particular interest in semiconductors is the interplay between magnetism and transport, which has remained unexplored. Here we report magneto-transport measurements on exfoliated CrI3 crystals. We find that tunneling conduction in the direction perpendicular to the crystalline planes exhibits a magnetoresistance as large as 10,000%. The evolution of the magnetoresistance with magnetic field and temperature reveals that the phenomenon originates from multiple transitions to different magnetic states, whose possible microscopic nature is discussed on the basis of all existing experimental observations. This observed dependence of the conductance of a tunnel barrier on its magnetic state is a phenomenon that demonstrates the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.

18.
Nat Commun ; 6: 8892, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26600289

RESUMO

Either in bulk form, or in atomically thin crystals, layered transition metal dichalcogenides continuously reveal new phenomena. The latest example is 1T'-WTe2, a semimetal found to exhibit the largest known magnetoresistance in the bulk, and predicted to become a topological insulator in strained monolayers. Here we show that reducing the thickness through exfoliation enables the electronic properties of WTe2 to be tuned, which allows us to identify the mechanisms responsible for the observed magnetotransport down to the atomic scale. The longitudinal resistance and the unconventional magnetic field dependence of the Hall resistance are reproduced quantitatively by a classical two-band model for crystals as thin as six monolayers, whereas a crossover to an Anderson insulator occurs for thinner crystals. Besides establishing the origin of the magnetoresistance of WTe2, our results represent a complete validation of the classical theory for two-band electron-hole transport, and indicate that atomically thin WTe2 layers remain gapless semimetals.

19.
Nat Commun ; 2: 575, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22146394

RESUMO

Three-dimensional topological insulators are characterized by the presence of a bandgap in their bulk and gapless Dirac fermions at their surfaces. New physical phenomena originating from the presence of the Dirac fermions are predicted to occur, and to be experimentally accessible via transport measurements in suitably designed electronic devices. Here we study transport through superconducting junctions fabricated on thin Bi(2)Se(3) single crystals, equipped with a gate electrode. In the presence of perpendicular magnetic field B, sweeping the gate voltage enables us to observe the filling of the Dirac fermion Landau levels, whose character evolves continuously from electron- to hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned, and is minimum at the charge neutrality point determined from the Landau level filling. Our results demonstrate how gated nano-electronic devices give control over normal and superconducting transport of Dirac fermions at an individual surface of a three-dimensional topological insulators.


Assuntos
Bismuto/química , Eletrônica/métodos , Engenharia/métodos , Nanotecnologia/métodos , Selênio/química , Semicondutores , Cristalização , Eletrodos , Elétrons , Grafite/química , Campos Magnéticos , Nanoestruturas/química , Propriedades de Superfície
20.
Phys Rev Lett ; 101(26): 267004, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19437664

RESUMO

In two dimensions the noninteracting density of states displays a van Hove singularity (VHS) which introduces an intrinsic electron-hole asymmetry, absent in three dimensions. We show that due to this VHS the strong-coupling analysis of tunneling spectra in high-Tc superconductors must be reconsidered. Based on a microscopic model which reproduces the experimental data with excellent accuracy, we elucidate the peculiar role played by the VHS in shaping the tunneling spectra, and show that more conventional analysis of strong-coupling effects can lead to severe errors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA