Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
EMBO Rep ; 25(9): 3842-3869, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38918502

RESUMO

Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.


Assuntos
Senescência Celular , Quimiocina CXCL1 , Células Endoteliais , Inflamação , Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Animais , Humanos , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Células Endoteliais/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Adesão Celular
2.
Sci Rep ; 12(1): 12955, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902594

RESUMO

Retinal vascular basement membrane (BM) thickening is an early structural abnormality of diabetic retinopathy (DR). Recent studies suggest that BM thickening contributes to the DR pathological cascade; however, much remains to be elucidated about the exact mechanisms by which BM thickening develops and subsequently drives other pathogenic events in DR. Therefore, we undertook a systematic analysis to understand how human retinal microvascular endothelial cells (hRMEC) and human retinal pericytes (hRP) change their expression of key extracellular matrix (ECM) constituents when treated with diabetes-relevant stimuli designed to model the three major insults of the diabetic environment: hyperglycemia, dyslipidemia, and inflammation. TNFα and IL-1ß caused the most potent and consistent changes in ECM expression in both hRMEC and hRP. We also demonstrate that conditioned media from IL-1ß-treated human Müller cells caused dose-dependent, significant increases in collagen IV and agrin expression in hRMEC. After narrowing our focus to inflammation-induced changes, we sought to understand how ECM deposited by hRMEC and hRP under inflammatory conditions affects the behavior of naïve hRMEC. Our data demonstrated that diabetes-relevant alterations in ECM composition alone cause both increased adhesion molecule expression by and increased peripheral blood mononuclear cell (PBMC) adhesion to naïve hRMEC. Taken together, these data demonstrate novel roles for inflammation and pericytes in driving BM pathology and suggest that inflammation-induced ECM alterations may advance other pathogenic behaviors in DR, including leukostasis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Retina/patologia
3.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166238, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343639

RESUMO

Chronic low-grade retinal inflammation is an essential contributor to the pathogenesis of diabetic retinopathy (DR). It is characterized by increased retinal cell expression and secretion of a variety of inflammatory cytokines; among these, IL-1ß has the reputation of being a major driver of cytokine-induced inflammation. IL-1ß and other cytokines drive inflammatory changes that cause damage to retinal cells, leading to the hallmark vascular lesions of DR; these include increased leukocyte adherence, vascular permeability, and capillary cell death. Nuclear factor of activated T-cells (NFAT) is a transcriptional regulator of inflammatory cytokines and adhesion molecules and is expressed in retinal cells. Consequently, it may influence multiple pathogenic steps early in DR. We investigated the NFAT-dependency of IL-1ß-induced inflammation in human Müller cells (hMC) and human retinal microvascular endothelial cells (hRMEC). Our results show that an NFAT inhibitor, Inhibitor of NFAT-Calcineurin Association-6 (INCA-6), decreased IL-1ß-induced expression of IL-1ß and TNFα in hMC, while having no effect on VEGF, CCL2, or CCL5 expression. We also demonstrate that INCA-6 attenuated IL-1ß-induced increases of IL-1ß, TNFα, IL-6, CCL2, and CCL5 (inflammatory cytokines and chemokines), and ICAM-1 and E-selectin (leukocyte adhesion molecules) expression in hRMEC. INCA-6 similarly inhibited IL-1ß-induced increases in leukocyte adhesion in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Finally, INCA-6 rescued IL-1ß-induced permeability in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Taken together, these data demonstrate the potential of NFAT inhibition to mitigate retinal inflammation secondary to diabetes.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-1beta/genética , Fatores de Transcrição NFATC/genética , Vasculite Retiniana/tratamento farmacológico , Inibidores de Calcineurina/farmacologia , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL5/genética , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Selectina E/genética , Células Endoteliais/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Interleucina-1beta/farmacologia , Fatores de Transcrição NFATC/antagonistas & inibidores , Retina/efeitos dos fármacos , Retina/patologia , Vasculite Retiniana/genética , Vasculite Retiniana/parasitologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Fator de Necrose Tumoral alfa/genética , Fator A de Crescimento do Endotélio Vascular/genética
4.
Sci Rep ; 8(1): 5459, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29626212

RESUMO

Chronic hyperglycemia is thought to be the major stimulator of retinal dysfunction in diabetic retinopathy (DR). Thus, many diabetes-related systemic factors have been overlooked as inducers of DR pathology. Cell culture models of retinal cell types are frequently used to mechanistically study DR, but appropriate stimulators of DR-like factors are difficult to identify. Furthermore, elevated glucose, a gold standard for cell culture treatments, yields little to no response from many primary human retinal cells. Thus, the goal of this project was to demonstrate the effectiveness of the free fatty acid, palmitic acid and compare its use alone and in combination with elevated glucose as a stimulus for human Müller cells, a retinal glial cell type that is activated early in DR pathogenesis and uniquely responsive to fatty acids. Using RNA sequencing, we identified a variety of DR-relevant pathways, including NFκB signaling and inflammation, intracellular lipid signaling, angiogenesis, and MAPK signaling, that were stimulated by palmitic acid, while elevated glucose alone did not significantly alter any diabetes-relevant pathways. Co-treatment of high glucose with palmitic acid potentiated the expression of several DR-relevant angiogenic and inflammatory targets, including PTGS2 (COX-2) and CXCL8 (IL-8).


Assuntos
Células Ependimogliais/efeitos dos fármacos , Glucose/farmacologia , Ácido Palmítico/farmacologia , Retinopatia Diabética/patologia , Interações Medicamentosas , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA