Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Breast Cancer Res ; 22(1): 75, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660617

RESUMO

BACKGROUND: PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. METHODS: The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. RESULTS: Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. CONCLUSION: PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animais , Apoptose/fisiologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Xenoenxertos , Homeostase , Humanos , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Células Tumorais Cultivadas
2.
Mol Cell Proteomics ; 14(10): 2775-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26106084

RESUMO

Reverse phase protein arrays (RPPA) are an established tool for measuring the expression and activation status of multiple proteins in parallel using only very small amounts of tissue. Several studies have demonstrated the value of this technique for signaling pathway analysis using proteins extracted from fresh frozen (FF) tissue in line with validated antibodies for this tissue type; however, formalin fixation and paraffin embedding (FFPE) is the standard method for tissue preservation in the clinical setting. Hence, we performed RPPA to measure profiles for a set of 300 protein markers using matched FF and FFPE tissue specimens to identify which markers performed similarly using the RPPA technique in fixed and unfixed tissues. Protein lysates were prepared from matched FF and FFPE tissue specimens of individual tumors taken from three different xenograft models of human cancer. Materials from both untreated mice and mice treated with either anti-HER3 or bispecific anti-IGF-1R/EGFR monoclonal antibodies were analyzed. Correlations between signals from FF and FFPE tissue samples were investigated. Overall, 60 markers were identified that produced comparable profiles between FF and FFPE tissues, demonstrating significant correlation between the two sample types. The top 25 markers also showed significance after correction for multiple testing. The panel of markers covered several clinically relevant tumor signaling pathways and both phosphorylated and nonphosphorylated proteins were represented. Biologically relevant changes in marker expression were noted when RPPA profiles from treated and untreated xenografts were compared. These data demonstrate that, using appropriately selected antibodies, RPPA analysis from FFPE tissue is well feasible and generates biologically meaningful information. The identified panel of markers that generate similar profiles in matched fixed and unfixed tissue samples may be clinically useful for pharmacodynamic studies of drug effect using FFPE tissues.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias/metabolismo , Inclusão em Parafina , Fixação de Tecidos , Animais , Linhagem Celular Tumoral , Receptores ErbB/imunologia , Feminino , Formaldeído , Humanos , Camundongos SCID , Análise Serial de Proteínas , Receptor ErbB-3/imunologia , Receptor IGF Tipo 1/imunologia
4.
Mol Cell Proteomics ; 12(9): 2615-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23653450

RESUMO

Reverse-phase protein arrays (RPPAs) have become an important tool for the sensitive and high-throughput detection of proteins from minute amounts of lysates from cell lines and cryopreserved tissue. The current standard method for tissue preservation in almost all hospitals worldwide is formalin fixation and paraffin embedding, and it would be highly desirable if RPPA could also be applied to formalin-fixed and paraffin embedded (FFPE) tissue. We investigated whether the analysis of FFPE tissue lysates with RPPA would result in biologically meaningful data in two independent studies. In the first study on breast cancer samples, we assessed whether a human epidermal growth factor receptor (HER) 2 score based on immunohistochemistry (IHC) could be reproduced with RPPA. The results showed very good concordance between the IHC and RPPA classifications of HER2 expression. In the second study, we profiled FFPE tumor specimens from patients with adenocarcinoma and squamous cell carcinoma in order to find new markers for differentiating these two subtypes of non-small cell lung cancer. p21-activated kinase 2 could be identified as a new differentiation marker for squamous cell carcinoma. Overall, the results demonstrate the technical feasibility and the merits of RPPA for protein expression profiling in FFPE tissue lysates.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Formaldeído/química , Neoplasias Pulmonares/metabolismo , Inclusão em Parafina , Análise Serial de Proteínas/métodos , Fixação de Tecidos , Western Blotting , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/patologia , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Coloração e Rotulagem
5.
Cancers (Basel) ; 14(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35740561

RESUMO

In light of the frequent development of therapeutic resistance in cancer treatment, there is a strong need for personalized model systems representing patient tumor heterogeneity, while enabling parallel drug testing and identification of appropriate treatment responses in individual patients. Using ovarian cancer as a prime example of a heterogeneous tumor disease, we developed a 3D preclinical tumor model comprised of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) to identify individual treatment vulnerabilities and validate chemo-, immuno- and targeted therapy efficacies. Enzymatic digestion of primary ovarian cancer tissue and cultivation in defined serum-free media allowed rapid and efficient recovery of PDM, while preserving histopathological features of corresponding patient tumor tissue. Reverse-phase protein array (RPPA)-analyses of >110 total and phospho-proteins enabled the identification of patient-specific sensitivities to standard, platinum-based therapy and thereby the prediction of potential treatment-responders. Co-cultures of PDM and autologous TILs for individual efficacy testing of immune checkpoint inhibitor treatment demonstrated patient-specific enhancement of cytotoxic TIL activity by this therapeutic approach. Combining protein pathway analysis and drug efficacy testing of PDM enables drug mode-of-action analyses and therapeutic sensitivity prediction within a clinically relevant time frame after surgery. Follow-up studies in larger cohorts are currently under way to further evaluate the applicability of this platform to support clinical decision making.

6.
Proteomics ; 9(13): 3535-48, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19609961

RESUMO

Cancer is caused by a complex pattern of molecular perturbations. To understand the biology of cancer, it is thus important to look at the activation state of key proteins and signaling networks. The limited amount of available sample material from patients and the complexity of protein expression patterns make the use of traditional protein analysis methods particularly difficult. In addition, the only approach that is currently available for performing functional studies is the use of serial biopsies, which is limited by ethical constraints and patient acceptance. The goal of this work was to establish a 3-D ex vivo culture technique in combination with reverse-phase protein microarrays (RPPM) as a novel experimental tool for use in cancer research. The RPPM platform allows the parallel profiling of large numbers of protein analytes to determine their relative abundance and activation level. Cancer tissue and the respective corresponding normal tissue controls from patients with colorectal cancer were cultured ex vivo. At various time points, the cultured samples were processed into lysates and analyzed on RPPM to assess the expression of carcinoembryonic antigen (CEA) and 24 proteins involved in the regulation of apoptosis. The methodology displayed good robustness and low system noise. As a proof of concept, CEA expression was significantly higher in tumor compared with normal tissue (p<0.0001). The caspase 9 expression signal was lower in tumor tissue than in normal tissue (p<0.001). Cleaved Caspase 8 (p=0.014), Bad (p=0.007), Bim (p=0.007), p73 (p=0.005), PARP (p<0.001), and cleaved PARP (p=0.007) were differentially expressed in normal liver and normal colon tissue. We demonstrate here the feasibility of using RPPM technology with 3-D ex vivo cultured samples. This approach is useful for investigating complex patterns of protein expression and modification over time. It should allow functional proteomics in patient samples with various applications such as pharmacodynamic analyses in drug development.


Assuntos
Proteínas Reguladoras de Apoptose/análise , Antígeno Carcinoembrionário/análise , Neoplasias do Colo/metabolismo , Análise Serial de Proteínas/métodos , Técnicas de Cultura de Tecidos/métodos , Proteínas Reguladoras de Apoptose/metabolismo , Antígeno Carcinoembrionário/metabolismo , Análise por Conglomerados , Humanos , Análise Serial de Proteínas/instrumentação , Reprodutibilidade dos Testes , Transdução de Sinais , Técnicas de Cultura de Tecidos/instrumentação
7.
Oncotarget ; 8(42): 72480-72493, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069804

RESUMO

Menopausal hormone therapy, using estrogen and synthetic progestins, is associated with an increased risk of developing breast cancer. The effect of progestins on breast cells is complex and not yet fully understood. In previous in vitro and in vivo studies, we found different progestins to increase the proliferation of Progesterone Receptor Membrane Component-1 (PGRMC1)-overexpressing MCF7 cells (MCF7/PGRMC1), suggesting a possible role of PGRMC1 in transducing membrane-initiated progestin signals. Understanding the activation mechanism of PGRMC1 by progestins will provide deeper insights into the mode of action of progestins on breast cells and the often-reported phenomenon of elevated breast cancer rates upon progestin-based hormone therapy. In the present study, we aimed to further investigate the effect of progestins on receptor activation in MCF7 and T47D breast cancer cell lines. We report that treatment of both breast cancer cell lines with the progestin norethisterone (NET) induces phosphorylation of PGRMC1 at the Casein Kinase 2 (CK2) phosphorylation site Ser181, which can be decreased by treatment with CK2 inhibitor quinalizarin. Point mutation of the Ser181 phosphorylation site in MCF7/PGRMC1 cells impaired proliferation upon NET treatment. This study gives further insights into the mechanism of differential phosphorylation of the receptor and confirms our earlier hypothesis that phosphorylation of the CK2-binding site is essential for activation of PGRMC1. It further suggests an important role of PGRMC1 in the tumorigenesis and progression of breast cancer in progestin-based hormone replacement therapy.

8.
Cancer Res ; 76(1): 96-107, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26669866

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) carries the most dismal prognosis of all solid tumors and is generally strongly resistant to currently available chemo- and/or radiotherapy regimens, including targeted molecular therapies. Therefore, unraveling the molecular mechanisms underlying the aggressive behavior of pancreatic cancer is a necessary prerequisite for the development of novel therapeutic approaches. We previously identified the protein placenta-specific 8 (PLAC8, onzin) in a genome-wide search for target genes associated with pancreatic tumor progression and demonstrated that PLAC8 is strongly ectopically expressed in advanced preneoplastic lesions and invasive human PDAC. However, the molecular function of PLAC8 remained unclear, and accumulating evidence suggested its role is highly dependent on cellular and physiologic context. Here, we demonstrate that in contrast to other cellular systems, PLAC8 protein localizes to the inner face of the plasma membrane in pancreatic cancer cells, where it interacts with specific membranous structures in a temporally and spatially stable manner. Inhibition of PLAC8 expression strongly inhibited pancreatic cancer cell growth by attenuating cell-cycle progression, which was associated with transcriptional and/or posttranslational modification of the central cell-cycle regulators CDKN1A, retinoblastoma protein, and cyclin D1 (CCND1), but did not impact autophagy. Moreover, Plac8 deficiency significantly inhibited tumor formation in genetically engineered mouse models of pancreatic cancer. Together, our findings establish PLAC8 as a central mediator of tumor progression in PDAC and as a promising candidate gene for diagnostic and therapeutic targeting.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Progressão da Doença , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Proteínas/genética , Análise Serial de Tecidos , Transfecção
9.
PLoS One ; 10(12): e0144535, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26695635

RESUMO

Circulating tumor cells (CTCs) are the potential precursors of metastatic disease. Most assays established for the enumeration of CTCs so far-including the gold standard CellSearch-rely on the expression of the cell surface marker epithelial cell adhesion molecule (EpCAM). But, these approaches may not detect CTCs that express no/low levels of EpCAM, e.g. by undergoing epithelial-to-mesenchymal transition (EMT). Here we present an enrichment strategy combining different antibodies specific for surface proteins and extracellular matrix (ECM) components to capture an EpCAMlow/neg cell line and EpCAMneg CTCs from blood samples of breast cancer patients depleted for EpCAM-positive cells. The expression of respective proteins (Trop2, CD49f, c-Met, CK8, CD44, ADAM8, CD146, TEM8, CD47) was verified by immunofluorescence on EpCAMpos (e.g. MCF7, SKBR3) and EpCAMlow/neg (MDA-MB-231) breast cancer cell lines. To test antibodies and ECM proteins (e.g. hyaluronic acid (HA), collagen I, laminin) for capturing EpCAMneg cells, the capture molecules were first spotted in a single- and multi-array format onto aldehyde-coated glass slides. Tumor cell adhesion of EpCAMpos/neg cell lines was then determined and visualized by Coomassie/MitoTracker staining. In consequence, marginal binding of EpCAMlow/neg MDA-MB-231 cells to EpCAM-antibodies could be observed. However, efficient adhesion/capturing of EpCAMlow/neg cells could be achieved via HA and immobilized antibodies against CD49f and Trop2. Optimal capture conditions were then applied to immunomagnetic beads to detect EpCAMneg CTCs from clinical samples. Captured CTCs were verified/quantified by immunofluorescence staining for anti-pan-Cytokeratin (CK)-FITC/anti-CD45 AF647/DAPI. In total, in 20 out of 29 EpCAM-depleted fractions (69%) from 25 metastatic breast cancer patients additional EpCAMneg CTCs could be identified [range of 1-24 CTCs per sample] applying Trop2, CD49f, c-Met, CK8 and/or HA magnetic enrichment. EpCAMneg dual-positive (CKpos/CD45pos) cells could be traced in 28 out of 29 samples [range 1-480]. By single-cell array-based comparative genomic hybridization we were able to demonstrate the malignant nature of one EpCAMneg subpopulation. In conclusion, we established a novel enhanced CTC enrichment strategy to capture EpCAMneg CTCs from clinical blood samples by targeting various cell surface antigens with antibody mixtures and ECM components.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos de Superfície/imunologia , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Células Neoplásicas Circulantes/metabolismo , Adulto , Idoso , Antígenos de Neoplasias/sangue , Antígenos de Superfície/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/sangue , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Molécula de Adesão da Célula Epitelial , Proteínas da Matriz Extracelular/sangue , Feminino , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Metástase Neoplásica , Análise de Célula Única
11.
Toxicol Pathol ; 35(7): 972-83, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18098043

RESUMO

Protein-kinase inhibitors are among the most advanced compounds in development using the new drug discovery paradigm of developing small-molecule drugs against specific molecular targets in cancer. After treatment with a cyclin dependent kinase CDK2 inhibitor in monkey, histopathological analysis of the eye showed specific cellular damage in the photoreceptor layer. Since this CDK2 inhibitor showed activity also on other CDKs, in order to investigate the mechanism of toxicity of this compound, we isolated cones and rods from the retina of normal monkey and humans by Laser Capture Microdissection. Using Real-Time PCR we first measured the expression of cyclin dependent protein-kinases (CDK)1, 2, 4, 5, Glycogen synthase kinase 3beta (GSK3beta) and microtubule associated protein TAU. We additionally verified the presence of these proteins in monkey eye sections by immuno-histochemistry and immunofluorescence analysis and afterwards quantified GSK3beta, phospho-GSK3beta and TAU by Reverse Phase Protein Microarrays. With this work we demonstrate how complementary gene expression and protein-based technologies constitute a powerful tool for the understanding of the molecular mechanism of a CDK2 inhibitor induced toxicity. Moreover, this investigative approach is helpful to better understand and characterize the mechanism of species-specific toxicities and further support a rational, molecular mechanism-based safety assessment in humans.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/toxicidade , Proteínas Serina-Treonina Quinases/análise , Retina/efeitos dos fármacos , Retina/enzimologia , Animais , Feminino , Imunofluorescência , Quinase 3 da Glicogênio Sintase/análise , Glicogênio Sintase Quinase 3 beta , Humanos , Imuno-Histoquímica , Macaca fascicularis , Masculino , Microdissecção , Fosforilação , Reação em Cadeia da Polimerase , Retina/patologia , Proteínas tau/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA