Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Sport Nutr Exerc Metab ; 31(3): 217-226, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588378

RESUMO

Protein ingestion and exercise stimulate myofibrillar protein synthesis rates. When combined, exercise further increases the postprandial rise in myofibrillar protein synthesis rates. It remains unclear whether protein ingestion with or without exercise also stimulates muscle connective tissue protein synthesis rates. The authors assessed the impact of presleep protein ingestion on overnight muscle connective tissue protein synthesis rates at rest and during recovery from resistance-type exercise in older men. Thirty-six healthy, older men were randomly assigned to ingest 40 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine-labeled casein protein (PRO, n = 12) or a nonprotein placebo (PLA, n = 12) before going to sleep. A third group performed a single bout of resistance-type exercise in the evening before ingesting 40 g intrinsically-labeled casein protein prior to sleep (EX+PRO, n = 12). Continuous intravenous infusions of L-[ring-2H5]-phenylalanine and L-[1-13C]-leucine were applied with blood and muscle tissue samples collected throughout overnight sleep. Presleep protein ingestion did not increase muscle connective tissue protein synthesis rates (0.049 ± 0.013 vs. 0.060 ± 0.024%/hr in PLA and PRO, respectively; p = .73). Exercise plus protein ingestion resulted in greater overnight muscle connective tissue protein synthesis rates (0.095 ± 0.022%/hr) when compared with PLA and PRO (p < .01). Exercise increased the incorporation of dietary protein-derived amino acids into muscle connective tissue protein (0.036 ± 0.013 vs. 0.054 ± 0.009 mole percent excess in PRO vs. EX+PRO, respectively; p < .01). In conclusion, resistance-type exercise plus presleep protein ingestion increases overnight muscle connective tissue protein synthesis rates in older men. Exercise enhances the utilization of dietary protein-derived amino acids as precursors for de novo muscle connective tissue protein synthesis during overnight sleep.


Assuntos
Tecido Conjuntivo/metabolismo , Proteínas Alimentares/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Treinamento Resistido , Sono/fisiologia , Idoso , Glicemia/análise , Proteínas Sanguíneas/análise , Caseínas/administração & dosagem , Caseínas/sangue , Caseínas/metabolismo , Proteínas Alimentares/metabolismo , Método Duplo-Cego , Fenômenos Fisiológicos da Nutrição do Idoso , Humanos , Insulina/sangue , Leucina/administração & dosagem , Leucina/sangue , Leucina/metabolismo , Masculino , Miofibrilas/metabolismo , Fenilalanina/administração & dosagem , Fenilalanina/sangue , Fenilalanina/metabolismo , Período Pós-Prandial/fisiologia
2.
Am J Physiol Endocrinol Metab ; 318(2): E117-E130, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743039

RESUMO

Short-term muscle disuse has been reported to lower both postabsorptive and postprandial myofibrillar protein synthesis rates. This study assessed the impact of disuse on daily myofibrillar protein synthesis rates following short-term (2 and 7 days) muscle disuse under free living conditions. Thirteen healthy young men (age: 20 ± 1 yr; BMI: 23 ± 1 kg/m-2) underwent 7 days of unilateral leg immobilization via a knee brace, with the nonimmobilized leg acting as a control. Four days before immobilization participants ingested 400 mL of 70% deuterated water, with 50-mL doses consumed daily thereafter. Upper leg bilateral MRI scans and muscle biopsies were collected before and after 2 and 7 days of immobilization to determine quadriceps volume and daily myofibrillar protein synthesis rates. Immobilization reduced quadriceps volume in the immobilized leg by 1.7 ± 0.3 and 6.7 ± 0.6% after 2 and 7 days, respectively, with no changes in the control leg. Over the 1-wk immobilization period, myofibrillar protein synthesis rates were 36 ± 4% lower in the immobilized (0.81 ± 0.04%/day) compared with the control (1.26 ± 0.04%/day) leg (P < 0.001). Myofibrillar protein synthesis rates in the control leg did not change over time (P = 0.775), but in the immobilized leg they were numerically lower during the 0- to 2-day period (16 ± 6%, 1.11 ± 0.09%/day, P = 0.153) and were significantly lower during the 2- to 7-day period (44 ± 5%, 0.70 ± 0.06%/day, P < 0.001) when compared with the control leg. We conclude that 1 wk of muscle disuse induces a rapid and sustained decline in daily myofibrillar protein synthesis rates in healthy young men.


Assuntos
Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Miofibrilas/metabolismo , Água Corporal/metabolismo , Dieta , Exercício Físico , Expressão Gênica , Voluntários Saudáveis , Humanos , Imobilização , Cinética , Perna (Membro) , Imageamento por Ressonância Magnética , Masculino , Proteínas Musculares/genética , Força Muscular , Músculo Esquelético/diagnóstico por imagem , Atrofia Muscular/diagnóstico por imagem , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/metabolismo , Adulto Jovem
3.
Int J Sport Nutr Exerc Metab ; 30(2): 153­164, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32035417

RESUMO

Physical activity increases muscle protein synthesis rates. However, the impact of exercise on the coordinated up- and/or downregulation of individual protein synthesis rates in skeletal muscle tissue remains unclear. The authors assessed the impact of exercise on mixed muscle, myofibrillar, and mitochondrial protein synthesis rates as well as individual protein synthesis rates in vivo in rats. Adult Lewis rats either remained sedentary (n = 3) or had access to a running wheel (n = 3) for the last 2 weeks of a 3-week experimental period. Deuterated water was injected and subsequently administered in drinking water over the experimental period. Blood and soleus muscle were collected and used to assess bulk mixed muscle, myofibrillar, and mitochondrial protein synthesis rates using gas chromatography-mass spectrometry and individual muscle protein synthesis rates using liquid chromatography-mass spectrometry (i.e., dynamic proteomic profiling). Wheel running resulted in greater myofibrillar (3.94 ± 0.26 vs. 3.03 ± 0.15%/day; p < .01) and mitochondrial (4.64 ± 0.24 vs. 3.97 ± 0.26%/day; p < .05), but not mixed muscle (2.64 ± 0.96 vs. 2.38 ± 0.62%/day; p = .71) protein synthesis rates, when compared with the sedentary condition. Exercise impacted the synthesis rates of 80 proteins, with the difference from the sedentary condition ranging between -64% and +420%. Significantly greater synthesis rates were detected for F1-ATP synthase, ATP synthase subunit alpha, hemoglobin, myosin light chain-6, and synaptopodin-2 (p < .05). The skeletal muscle protein adaptive response to endurance-type exercise involves upregulation of mitochondrial protein synthesis rates, but it is highly coordinated as reflected by the up- and downregulation of various individual proteins across different bulk subcellular protein fractions.

4.
Am J Physiol Endocrinol Metab ; 316(3): E536-E545, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645176

RESUMO

Short periods of bed rest lead to the loss of muscle mass and quality. It has been speculated that dietary feeding pattern may have an impact upon muscle protein synthesis rates and, therefore, modulate the loss of muscle mass and quality. We subjected 20 healthy men (age: 25 ± 1 yr, body mass index: 23.8 ± 0.8 kg/m2) to 1 wk of strict bed rest with intermittent (4 meals/day) or continuous (24 h/day) enteral tube feeding. Participants consumed deuterium oxide for 7 days before bed rest and throughout the 7-day bed rest period. Prior to and immediately after bed rest, lean body mass (dual energy X-ray absorptiometry), quadriceps cross-sectional area (CSA; CT), maximal oxygen uptake capacity (V̇o2peak), and whole body insulin sensitivity (hyperinsulinemic-euglycemic clamp) were assessed. Muscle biopsies were collected 7 days before, 1 day before, and immediately after bed rest to assess muscle tracer incorporation. Bed rest resulted in 0.3 ± 0.3 vs. 0.7 ± 0.4 kg lean tissue loss and a 1.1 ± 0.6 vs. 0.8 ± 0.5% decline in quadriceps CSA in the intermittent vs. continuous feeding group, respectively (both P < 0.05), with no differences between groups (both P > 0.05). Moreover, feeding pattern did not modulate the bed rest-induced decline in insulin sensitivity (-46 ± 3% vs. 39 ± 3%; P < 0.001) or V̇o2peak (-2.5 ± 2.2 vs. -8.6 ± 2.2%; P < 0.010) (both P > 0.05). Myofibrillar protein synthesis rates during bed rest did not differ between the intermittent and continuous feeding group (1.33 ± 0.07 vs. 1.50 ± 0.13%/day, respectively; P > 0.05). In conclusion, dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during 1 wk of bed rest in healthy men.


Assuntos
Repouso em Cama/efeitos adversos , Nutrição Enteral/métodos , Proteínas Musculares/biossíntese , Atrofia Muscular/etiologia , Músculo Quadríceps/diagnóstico por imagem , Absorciometria de Fóton , Adulto , Expressão Gênica , Técnica Clamp de Glucose , Voluntários Saudáveis , Humanos , Resistência à Insulina , Intubação Gastrointestinal , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/metabolismo , Consumo de Oxigênio , Músculo Quadríceps/metabolismo , Adulto Jovem
5.
Brain ; 141(4): 1122-1129, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432531

RESUMO

All tissues undergo continuous reconditioning via the complex orchestration of changes in tissue protein synthesis and breakdown rates. Skeletal muscle tissue has been well studied in this regard, and has been shown to turnover at a rate of 1-2% per day in vivo in humans. Few data are available on protein synthesis rates of other tissues. Because of obvious limitations with regard to brain tissue sampling no study has ever measured brain protein synthesis rates in vivo in humans. Here, we applied stable isotope methodology to directly assess protein synthesis rates in neocortex and hippocampus tissue of six patients undergoing temporal lobectomy for drug-resistant temporal lobe epilepsy (Clinical trial registration: NTR5147). Protein synthesis rates of neocortex and hippocampus tissue averaged 0.17 ± 0.01 and 0.13 ± 0.01%/h, respectively. Brain tissue protein synthesis rates were 3-4-fold higher than skeletal muscle tissue protein synthesis rates (0.05 ± 0.01%/h; P < 0.001). In conclusion, the protein turnover rate of the human brain is much higher than previously assumed.


Assuntos
Encéfalo/fisiopatologia , Epilepsia do Lobo Temporal/patologia , Plasticidade Neuronal/fisiologia , Proteínas/metabolismo , Adulto , Encéfalo/cirurgia , Isótopos de Carbono , Epilepsia do Lobo Temporal/sangue , Epilepsia do Lobo Temporal/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuronavegação , Procedimentos Neurocirúrgicos/métodos , Fenilalanina/metabolismo , Fatores de Tempo
6.
J Nutr ; 148(11): 1723-1732, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247714

RESUMO

Background: The proposed benefits of protein supplementation on the skeletal muscle adaptive response to resistance exercise training in older adults remain unclear. Objective: The present study assessed whether protein supplementation after exercise and before sleep augments muscle mass and strength gains during resistance exercise training in older individuals. Methods: Forty-one older men [mean ± SEM age: 70 ± 1 y; body mass index (kg/m2): 25.3 ± 0.4] completed 12 wk of whole-body resistance exercise training (3 sessions/wk) and were randomly assigned to ingest either protein (21 g protein, 3 g total leucine, 9 g carbohydrate, 3 g fat; n = 21) or an energy-matched placebo (0 g protein, 25 g carbohydrate, 6 g fat; n = 20) after exercise and each night before sleep. Maximal strength was assessed by 1-repetition-maximum (1RM) strength testing, and muscle hypertrophy was assessed at the whole-body (dual-energy X-ray absorptiometry), upper leg (computed tomography scan), and muscle fiber (biopsy) levels. Muscle protein synthesis rates were assessed during week 12 of training with the use of deuterated water (2H2O) administration. Results: Leg-extension 1RM increased in both groups (placebo: 88 ± 3 to 104 ± 4 kg; protein: 85 ± 3 to 102 ± 4 kg; P < 0.001), with no differences between groups. Quadriceps cross-sectional area (placebo: 67.8 ± 1.7 to 73.5 ± 2.0 cm2; protein: 68.4 ± 1.4 to 72.3 ± 1.4 cm2; P < 0.001) increased in both groups, with no differences between groups. Muscle fiber hypertrophy occurred in type II muscle fibers (placebo: 5486 ± 418 to 6492 ± 429 µm2; protein: 5367 ± 301 to 6259 ± 391 µm2; P < 0.001), with no differences between groups. Muscle protein synthesis rates were 1.62% ± 0.06% and 1.57% ± 0.05%/d in the placebo and protein groups, respectively, with no differences between groups. Conclusion: Protein supplementation after exercise and before sleep does not further augment skeletal muscle mass or strength gains during resistance exercise training in active older men. This study was registered at the Netherlands Trial Registry (www.trialregister.nl) as NTR5082.


Assuntos
Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Sono/fisiologia , Idoso , Aminoácidos , Cromo , Esquema de Medicação , Humanos , Masculino , Ácidos Nicotínicos
7.
Am J Physiol Endocrinol Metab ; 311(1): E278-85, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27279248

RESUMO

The loss of muscle mass and strength that occurs with aging, termed sarcopenia, has been (at least partly) attributed to an impaired muscle protein synthetic response to food intake. Previously, we showed that neuromuscular electrical stimulation (NMES) can stimulate fasting muscle protein synthesis rates and prevent muscle atrophy during disuse. We hypothesized that NMES prior to protein ingestion would increase postprandial muscle protein accretion. Eighteen healthy elderly (69 ± 1 yr) males participated in this study. After a 70-min unilateral NMES protocol was performed, subjects ingested 20 g of intrinsically l-[1-(13)C]phenylalanine-labeled casein. Plasma samples and muscle biopsies were collected to assess postprandial mixed muscle and myofibrillar protein accretion as well as associated myocellular signaling during a 4-h postprandial period in both the control (CON) and stimulated (NMES) leg. Protein ingestion resulted in rapid increases in both plasma phenylalanine concentrations and l-[1-(13)C]phenylalanine enrichments, which remained elevated during the entire 4-h postprandial period (P < 0.05). Mixed-muscle protein-bound l-[1-(13)C]phenylalanine enrichments increased significantly over time following protein ingestion, with no differences between the CON (0.0164 ± 0.0019 MPE) and NMES (0.0164 ± 0.0019 MPE) leg (P > 0.05). In agreement, no differences were observed in the postprandial rise in myofibrillar protein bound l-[1-(13)C]phenylalanine enrichments between the CON and NMES legs (0.0115 ± 0.0014 vs. 0.0133 ± 0.0013 MPE, respectively, P > 0.05). Significant increases in mTOR and P70S6K phosphorylation status were observed in the NMES-stimulated leg only (P < 0.05). We conclude that a single session of NMES prior to food intake does not augment postprandial muscle protein accretion in healthy older men.


Assuntos
Estimulação Elétrica , Proteínas Musculares/metabolismo , Período Pós-Prandial , Músculo Quadríceps/metabolismo , Idoso , Glicemia/metabolismo , Western Blotting , Isótopos de Carbono , Caseínas , Eletrodos , Humanos , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Sarcopenia , Transdução de Sinais
8.
Am J Physiol Endocrinol Metab ; 311(6): E964-E973, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27780822

RESUMO

Protein ingestion before sleep augments postexercise muscle protein synthesis during overnight recovery. It is unknown whether postexercise and presleep protein consumption modulates postprandial protein handling and myofibrillar protein synthetic responses the following morning. Sixteen healthy young (24 ± 1 yr) men performed unilateral resistance-type exercise (contralateral leg acting as a resting control) at 2000. Participants ingested 20 g of protein immediately after exercise plus 60 g of protein presleep (PRO group; n = 8) or equivalent boluses of carbohydrate (CON; n = 8). The subsequent morning participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and l-[1-13C]leucine combined with ingestion of 20 g intrinsically l-[1-13C]phenylalanine- and l-[1-13C]leucine-labeled protein to assess postprandial protein handling and myofibrillar protein synthesis in the rested and exercised leg in CON and PRO. Exercise increased postabsorptive myofibrillar protein synthesis rates the subsequent day (P < 0.001), with no differences between CON and PRO. Protein ingested in the morning increased myofibrillar protein synthesis in both the exercised and rested leg (P < 0.01), with no differences between treatments. Myofibrillar protein bound l-[1-13C]phenylalanine enrichments were greater in the exercised (0.016 ± 0.002 and 0.015 ± 0.002 MPE in CON and PRO, respectively) vs. rested (0.010 ± 0.002 and 0.009 ± 0.002 MPE in CON and PRO, respectively) leg (P < 0.05), with no differences between treatments (P > 0.05). The additive effects of resistance-type exercise and protein ingestion on myofibrillar protein synthesis persist for more than 12 h after exercise and are not modulated by protein consumption during acute postexercise recovery. This work provides evidence of an extended window of opportunity where presleep protein supplementation can be an effective nutrient timing strategy to optimize skeletal muscle reconditioning.


Assuntos
Proteínas Alimentares/farmacologia , Exercício Físico/fisiologia , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Treinamento Resistido , Sono , Adulto , Isótopos de Carbono , Deutério , Carboidratos da Dieta/farmacologia , Voluntários Saudáveis , Humanos , Leucina/metabolismo , Masculino , Proteínas Musculares/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fenilalanina/metabolismo , Adulto Jovem
9.
Bone ; 177: 116921, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769955

RESUMO

BACKGROUND: All musculoskeletal tissues are in a constant state of turnover, with a dynamic equilibrium between tissue protein synthesis and breakdown rates. The synthesis of protein allows musculoskeletal tissues to heal following injury. Yet, impaired tissue healing is observed following certain injuries, such as geriatric hip fractures. It is assumed that the regenerative properties of femoral head bone tissue are compromised following an intracapsular hip fracture and therefore hip replacement surgery is normally performed. However, the actual impact on in vivo bone protein synthesis rates has never been determined. DESIGN: In the present study, 10 patients (age: 79 ± 10 y, BMI: 24 ± 4 kg/m2) with an acute (<24 h) intracapsular hip fracture received a primed continuous intravenous infusion of L-[ring-13C6]-phenylalanine before and throughout their hip replacement surgery. Trabecular and cortical bone tissue from both the femoral head and proximal femur were sampled during surgery to assess protein synthesis rates of affected (femoral head) and unaffected (proximal femur) bone tissue, respectively. In addition, tissue samples of gluteus maximus muscle, synovium, ligamentum teres, and femoral head cartilage were collected. Tissue-specific protein synthesis rates were assessed by measuring L-[ring-13C6]-phenylalanine incorporation in tissue protein. RESULTS: Femoral head trabecular bone protein synthesis rates (0.056 [0.024-0.086] %/h) were lower when compared to proximal femur trabecular bone protein synthesis rates (0.081 [0.056-0.118] %/h; P = 0.043). Cortical bone protein synthesis rates did not differ between the femoral head and proximal femur (0.041 [0.021-0.078] and 0.045 [0.028-0.073] %/h, respectively; P > 0.05). Skeletal muscle, synovium, ligamentum teres, and femoral head cartilage protein synthesis rates averaged 0.080 [0.048-0.089], 0.093 [0.051-0.130], 0.121 [0.110-0.167], and 0.023 [0.015-0.039] %/h, respectively. CONCLUSION: In contrast to the general assumption that the femoral head is avital after an intracapsular displaced hip fracture in the elderly, our data show that bone protein synthesis is still ongoing in femoral head bone tissue during the early stages following an intracapsular hip fracture in older patients. Nonetheless, trabecular bone protein synthesis rates are lower in the femoral head when compared to the proximal femur in older patients following an acute intracapsular hip fracture. Trial register no: NL9036.

10.
Sports Med ; 53(7): 1445-1455, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36857005

RESUMO

BACKGROUND: Casein protein ingestion prior to sleep has been shown to increase myofibrillar protein synthesis rates during overnight sleep. It remains to be assessed whether pre-sleep protein ingestion can also increase mitochondrial protein synthesis rates. Though it has been suggested that casein protein may be preferred as a pre-sleep protein source, no study has compared the impact of pre-sleep whey versus casein ingestion on overnight muscle protein synthesis rates. OBJECTIVE: We aimed to assess the impact of casein and whey protein ingestion prior to sleep on mitochondrial and myofibrillar protein synthesis rates during overnight recovery from a bout of endurance-type exercise. METHODS: Thirty-six healthy young men performed a single bout of endurance-type exercise in the evening (19:45 h). Thirty minutes prior to sleep (23:30 h), participants ingested 45 g of casein protein, 45 g of whey protein, or a non-caloric placebo. Continuous intravenous L-[ring-13C6]-phenylalanine infusions were applied, with blood and muscle tissue samples being collected to assess overnight mitochondrial and myofibrillar protein synthesis rates. RESULTS: Pooled protein ingestion resulted in greater mitochondrial (0.087 ± 0.020 vs 0.067 ± 0.016%·h-1, p = 0.005) and myofibrillar (0.060 ± 0.014 vs 0.047 ± 0.011%·h-1, p = 0.012) protein synthesis rates when compared with placebo. Casein and whey protein ingestion did not differ in their capacity to stimulate mitochondrial (0.082 ± 0.019 vs 0.092 ± 0.020%·h-1, p = 0.690) and myofibrillar (0.056 ± 0.009 vs 0.064 ± 0.018%·h-1, p = 0.440) protein synthesis rates. CONCLUSIONS: Protein ingestion prior to sleep increases both mitochondrial and myofibrillar protein synthesis rates during overnight recovery from exercise. The overnight muscle protein synthetic response to whey and casein protein does not differ. CLINICAL TRIAL REGISTRATION: NTR7251 .


Assuntos
Caseínas , Proteínas Alimentares , Masculino , Humanos , Caseínas/metabolismo , Proteínas do Soro do Leite/metabolismo , Sono/fisiologia , Proteínas Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Ingestão de Alimentos , Músculo Esquelético/metabolismo
11.
Cell Rep Med ; 4(12): 101324, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118410

RESUMO

The belief that the anabolic response to feeding during postexercise recovery is transient and has an upper limit and that excess amino acids are being oxidized lacks scientific proof. Using a comprehensive quadruple isotope tracer feeding-infusion approach, we show that the ingestion of 100 g protein results in a greater and more prolonged (>12 h) anabolic response when compared to the ingestion of 25 g protein. We demonstrate a dose-response increase in dietary-protein-derived plasma amino acid availability and subsequent incorporation into muscle protein. Ingestion of a large bolus of protein further increases whole-body protein net balance, mixed-muscle, myofibrillar, muscle connective, and plasma protein synthesis rates. Protein ingestion has a negligible impact on whole-body protein breakdown rates or amino acid oxidation rates. These findings demonstrate that the magnitude and duration of the anabolic response to protein ingestion is not restricted and has previously been underestimated in vivo in humans.


Assuntos
Aminoácidos , Recuperação após o Exercício , Humanos , Músculo Esquelético/metabolismo , Ingestão de Alimentos/fisiologia , Proteínas de Ligação ao GTP/metabolismo
12.
Am J Physiol Endocrinol Metab ; 302(8): E992-9, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22338070

RESUMO

Whey protein ingestion has been shown to effectively stimulate postprandial muscle protein accretion in older adults. However, the impact of the amount of whey protein ingested on protein digestion and absorption kinetics, whole body protein balance, and postprandial muscle protein accretion remains to be established. We aimed to fill this gap by including 33 healthy, older men (73 ± 2 yr) who were randomly assigned to ingest 10, 20, or 35 g of intrinsically l-[1-¹³C]phenylalanine-labeled whey protein (n = 11/treatment). Ingestion of labeled whey protein was combined with continuous intravenous l-[ring-²H5]phenylalanine and l-[ring-²H2]tyrosine infusion to assess the metabolic fate of whey protein-derived amino acids. Dietary protein digestion and absorption rapidly increased following ingestion of 10, 20, and 35 g whey protein, with the lowest and highest (peak) values observed following 10 and 35 g, respectively (P < 0.05). Whole body net protein balance was positive in all groups (19 ± 1, 37 ± 2, and 58 ± 2 µmol/kg), with the lowest and highest values observed following ingestion of 10 and 35 g, respectively (P < 0.05). Postprandial muscle protein accretion, assessed by l-[1-¹³C]phenylalanine incorporation in muscle protein, was higher following ingestion of 35 g when compared with 10 (P < 0.01) or 20 (P < 0.05) g. We conclude that ingestion of 35 g whey protein results in greater amino acid absorption and subsequent stimulation of de novo muscle protein synthesis compared with the ingestion of 10 or 20 g whey protein in healthy, older men.


Assuntos
Envelhecimento/metabolismo , Aminoácidos/metabolismo , Absorção Intestinal , Proteínas do Leite/metabolismo , Proteínas Musculares/biossíntese , Músculo Quadríceps/metabolismo , Idoso , Algoritmos , Aminoácidos/sangue , Glicemia , Isótopos de Carbono , Deutério , Digestão , Humanos , Insulina/sangue , Cinética , Masculino , Proteínas do Leite/administração & dosagem , Oxirredução , Fenilalanina/sangue , Fenilalanina/metabolismo , Período Pós-Prandial , Tirosina/sangue , Tirosina/metabolismo , Proteínas do Soro do Leite
13.
Eur J Appl Physiol ; 111(8): 1871-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21234594

RESUMO

We examined the effect of an acute bout of resistance exercise on fractional muscle protein synthesis rates in human type I and type II muscle fibres. After a standardised breakfast (31 ± 1 kJ kg(-1) body weight, consisting of 52 Energy% (En%) carbohydrate, 34 En% protein and 14 En% fat), 9 untrained men completed a lower-limb resistance exercise bout (8 sets of 10 repetitions leg press and leg extension at 70% 1RM). A primed, continuous infusion of L: -[ring-(13)C(6)]phenylalanine was combined with muscle biopsies collected from both legs immediately after exercise and after 6 h of post-exercise recovery. Single muscle fibres were dissected from freeze-dried biopsies and stained for ATPase activity with pre-incubation at a pH of 4.3. Type I and II fibres were separated under a light microscope and analysed for protein-bound L: -[ring-(13)C(6)]phenylalanine labelling. Baseline (post-exercise) L: -[ring-(13)C(6)]phenylalanine muscle tissue labelling, expressed as (∂(13)C/(12)C), averaged -32.09 ± 0.28, -32.53 ± 0.10 and -32.02 ± 0.16 in the type I and II muscle fibres and mixed muscle, respectively (P = 0.14). During post-exercise recovery, muscle protein synthesis rates were marginally (8 ± 2%) higher in the type I than type II muscle fibres, at 0.100 ± 0.005 versus 0.094 ± 0.005%/h, respectively (P < 0.05), whereby rates of mixed muscle protein were 0.091 ± 0.005%/h. Muscle protein synthesis rates following resistance-type exercise are only marginally higher in type I compared with type II muscle fibres.


Assuntos
Exercício Físico/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Biossíntese de Proteínas/fisiologia , Treinamento Resistido , Adulto , Humanos , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Fenilalanina/metabolismo , Fenilalanina/farmacocinética , Recuperação de Função Fisiológica/fisiologia , Fatores de Tempo , Regulação para Cima/fisiologia , Adulto Jovem
14.
Med Sci Sports Exerc ; 52(9): 1983-1991, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32195768

RESUMO

PURPOSE: This study aimed to assess the effect of dietary protein ingestion on intramuscular connective tissue protein synthesis rates during overnight recovery from a single bout of resistance exercise. METHODS: Thirty-six healthy, young males were randomly assigned to one of three treatments. One group ingested 30 g intrinsically L-[1-C]-phenylalanine-labeled casein protein before sleep (PRO, n = 12). The other two groups performed a bout of resistance exercise in the evening and ingested either placebo (EX, n = 12) or 30 g intrinsically L-[1-C]-phenylalanine-labeled casein protein before sleep (EX + PRO, n = 12). Continuous intravenous infusions of L-[ring-H5]-phenylalanine and L-[1-C]-leucine were applied, and blood and muscle tissue samples were collected to assess connective tissue protein synthesis rates and dietary protein-derived amino acid incorporation in the connective tissue protein fraction. RESULTS: Resistance exercise resulted in higher connective tissue protein synthesis rates when compared with rest (0.086 ± 0.017%·h [EX] and 0.080 ± 0.019%·h [EX + PRO] vs 0.059 ± 0.016%·h [PRO]; P < 0.05). Postexercise casein protein ingestion did not result in higher connective tissue protein synthesis rates when compared with postexercise placebo ingestion (P = 1.00). Dietary protein-derived amino acids were incorporated into the connective tissue protein fraction at rest, and to a greater extent during recovery from exercise (P = 0.002). CONCLUSION: Resistance exercise increases intramuscular connective tissue protein synthesis rates during overnight sleep, with no further effect of postexercise protein ingestion. However, dietary protein-derived amino acids are being used as precursors to support de novo connective tissue protein synthesis.


Assuntos
Caseínas/administração & dosagem , Tecido Conjuntivo/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Treinamento Resistido , Adulto , Área Sob a Curva , Glicemia/metabolismo , Glicina/sangue , Humanos , Insulina/sangue , Masculino , Prolina/sangue , Adulto Jovem
15.
Am J Clin Nutr ; 112(2): 303-317, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359142

RESUMO

BACKGROUND: Protein ingestion increases skeletal muscle protein synthesis rates during recovery from endurance exercise. OBJECTIVES: We aimed to determine the effect of graded doses of dietary protein co-ingested with carbohydrate on whole-body protein metabolism, and skeletal muscle myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during recovery from endurance exercise. METHODS: In a randomized, double-blind, parallel-group design, 48 healthy, young, endurance-trained men (mean ± SEM age: 27 ± 1 y) received a primed continuous infusion of l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine and ingested 45 g carbohydrate with either 0 (0 g PRO), 15 (15 g PRO), 30 (30 g PRO), or 45 (45 g PRO) g intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled milk protein after endurance exercise. Blood and muscle biopsy samples were collected over 360 min of postexercise recovery to assess whole-body protein metabolism and both MyoPS and MitoPS rates. RESULTS: Protein intake resulted in ∼70%-74% of the ingested protein-derived phenylalanine appearing in the circulation. Whole-body net protein balance increased dose-dependently after ingestion of 0, 15, 30, or 45 g protein (mean ± SEM: -0.31± 0.16, 5.08 ± 0.21, 10.04 ± 0.30, and 13.49 ± 0.55 µmol phenylalanine · kg-1 · h-1, respectively; P < 0.001). 30 g PRO stimulated a ∼46% increase in MyoPS rates (%/h) compared with 0 g PRO and was sufficient to maximize MyoPS rates after endurance exercise. MitoPS rates were not increased after protein ingestion; however, incorporation of dietary protein-derived l-[1-13C]-phenylalanine into de novo mitochondrial protein increased dose-dependently after ingestion of 15, 30, and 45 g protein at 360 min postexercise (0.018 ± 0.002, 0.034 ± 0.002, and 0.046 ± 0.003 mole percentage excess, respectively; P < 0.001). CONCLUSIONS: Protein ingested after endurance exercise is efficiently digested and absorbed into the circulation. Whole-body net protein balance and dietary protein-derived amino acid incorporation into mitochondrial protein respond to increasing protein intake in a dose-dependent manner. Ingestion of 30 g protein is sufficient to maximize MyoPS rates during recovery from a single bout of endurance exercise.This trial was registered at trialregister.nl as NTR5111.


Assuntos
Proteínas Alimentares/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Adulto , Aminoácidos/sangue , Aminoácidos/metabolismo , Proteínas Alimentares/análise , Método Duplo-Cego , Treino Aeróbico , Exercício Físico , Humanos , Masculino
16.
J Nutr ; 139(9): 1707-13, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19625697

RESUMO

Impaired digestion and/or absorption of dietary protein lowers postprandial plasma amino acid availability and, as such, could reduce the postprandial muscle protein synthetic response in the elderly. We aimed to compare in vivo dietary protein digestion and absorption and the subsequent postprandial muscle protein synthetic response between young and elderly men. Ten elderly (64 +/- 1 y) and 10 young (23 +/- 1 y) healthy males consumed a single bolus of 35 g specifically produced, intrinsically l-[1-(13)C]phenylalanine-labeled micellar casein (CAS) protein. Furthermore, primed continuous infusions with l-[ring-(2)H(5)]phenylalanine, l-[1-(13)C]leucine, and l-[ring-(2)H(2)]tyrosine were applied and blood and muscle tissue samples were collected to assess the appearance rate of dietary protein-derived phenylalanine in the circulation and the subsequent muscle protein fractional synthetic rate over a 6-h postprandial period. Protein ingestion resulted in a rapid increase in exogenous phenylalanine appearance in both the young and elderly men. Total exogenous phenylalanine appearance rates (expressed as area under the curve) were 39 +/- 3 mumol.6 h.kg(-1) in the young men and 38 +/- 2 mumol.6 h.kg(-1) in the elderly men (P = 0.73). In accordance, splanchnic amino acid extraction did not differ between young (72 +/- 2%) and elderly (73 +/- 1%) volunteers (P = 0.74). Muscle protein synthesis rates, calculated from the oral tracer, were 0.063 +/- 0.006 and 0.054 +/- 0.004%/h in the young and elderly men, respectively, and did not differ between groups (P = 0.27). We conclude that protein digestion and absorption kinetics and the subsequent muscle protein synthetic response following the ingestion of a large bolus of intact CAS are not substantially impaired in healthy, elderly men.


Assuntos
Envelhecimento/fisiologia , Aminoácidos/sangue , Proteínas Alimentares/metabolismo , Digestão/fisiologia , Absorção Intestinal/fisiologia , Proteínas Musculares/biossíntese , Idoso , Aminoácidos/administração & dosagem , Área Sob a Curva , Caseínas/administração & dosagem , Caseínas/metabolismo , Caseínas/farmacocinética , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/farmacocinética , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Período Pós-Prandial , Adulto Jovem
17.
PLoS One ; 14(11): e0224745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697717

RESUMO

Skeletal muscle plasticity is reflected by a dynamic balance between protein synthesis and breakdown, with basal muscle tissue protein synthesis rates ranging between 0.02 and 0.09%/h. Though it is evident that other musculoskeletal tissues should also express some level of plasticity, data on protein synthesis rates of most of these tissues in vivo in humans is limited. Six otherwise healthy patients (62±3 y), scheduled to undergo unilateral total knee arthroplasty, were subjected to primed continuous intravenous infusions with L-[ring-13C6]-Phenylalanine throughout the surgical procedure. Tissue samples obtained during surgery included muscle, tendon, cruciate ligaments, cartilage, bone, menisci, fat, and synovium. Tissue-specific fractional protein synthesis rates (%/h) were assessed by measuring the incorporation of L-[ring-13C6]-Phenylalanine in tissue protein and were compared with muscle tissue protein synthesis rates using a paired t test. Tendon, bone, cartilage, Hoffa's fat pad, anterior and posterior cruciate ligament, and menisci tissue protein synthesis rates averaged 0.06±0.01, 0.03±0.01, 0.04±0.01, 0.11±0.03, 0.07±0.02, 0.04±0.01, and 0.04±0.01%/h, respectively, and did not significantly differ from skeletal muscle protein synthesis rates (0.04±0.01%/h; P>0.05). Synovium derived protein (0.13±0.03%/h) and intercondylar notch bone tissue protein synthesis rates (0.03±0.01%/h) were respectively higher and lower compared to skeletal muscle protein synthesis rates (P<0.05 and P<0.01, respectively). Basal protein synthesis rates in various musculoskeletal tissues are within the same range of skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, cartilage, ligament, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and 0.13% per hour in vivo in humans. Clinical trial registration: NTR5147.


Assuntos
Osso e Ossos/metabolismo , Cartilagem/metabolismo , Ligamentos/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Tendões/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenilalanina/metabolismo , Ligação Proteica
18.
Med Sci Sports Exerc ; 51(6): 1137-1145, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30694972

RESUMO

PURPOSE: Combining blood flow restriction (BFR) with exercise can stimulate skeletal muscle hypertrophy. Recent observations in an animal model suggest that BFR performed without exercise can also induce anabolic effects. We assessed the effect of BFR performed both with and without low-load resistance-type exercise (LLRE) on in vivo myofibrillar protein synthesis rates in young men. METHODS: Twenty healthy young men (age = 24 ± 1 yr, body mass index = 22.9 ± 0.6 kg·m) were randomly assigned to remain in resting condition (REST ± BFR; n = 10) or to perform LLRE (LLRE ± BFR at 20% one-repetition maximum; n = 10), combined with two 5-min cycles of single leg BFR. Myofibrillar protein synthesis rates were assessed during a 5-h post-BFR period by combining a primed continuous L-[ring-C6]phenylalanine infusion with the collection of blood samples, and muscle biopsies from the BFR leg and the contralateral control leg. The phosphorylation status of anabolic signaling (mammalian target of rapamycin pathway) and metabolic stress (acetyl-CoA carboxylase)-related proteins, as well as the mRNA expression of genes associated with skeletal muscle mass regulation, was assessed in the collected muscle samples. RESULTS: Under resting conditions, no differences in anabolic signaling or myofibrillar protein synthesis rates were observed between REST + BFR and REST (0.044% ± 0.004% vs 0.043% ± 0.004% per hour, respectively; P = 0.683). By contrast, LLRE + BFR increased myofibrillar protein synthesis rates by 10% ± 5% compared with LLRE (0.048% ± 0.005% vs 0.043% ± 0.004% per hour, respectively; P = 0.042). Furthermore, compared with LLRE, LLRE + BFR showed higher phosphorylation status of acetyl-CoA carboxylase and 4E-BP1 as well as the elevated mRNA expression of MuRF1 (all P < 0.05). CONCLUSION: BFR does not increase myofibrillar protein synthesis rates in healthy young men under resting conditions. When combined with LLRE, BFR increases postexercise myofibrillar protein synthesis rates in vivo in humans.


Assuntos
Proteínas Musculares/biossíntese , Músculo Esquelético/irrigação sanguínea , Miofibrilas/metabolismo , Fluxo Sanguíneo Regional , Treinamento Resistido/métodos , Acetil-CoA Carboxilase/metabolismo , Expressão Gênica , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Músculo Esquelético/anatomia & histologia , Fenilalanina/sangue , Fosforilação , RNA Mensageiro/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem
19.
Am J Clin Nutr ; 110(4): 862-872, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31250889

RESUMO

BACKGROUND: Protein ingestion increases muscle protein synthesis rates. However, limited data are currently available on the effects of branched-chain amino acid (BCAA) and branched-chain ketoacid (BCKA) ingestion on postprandial muscle protein synthesis rates. OBJECTIVE: The aim of this study was to compare the impact of ingesting 6 g BCAA, 6 g BCKA, and 30 g milk protein (MILK) on the postprandial rise in circulating amino acid concentrations and subsequent myofibrillar protein synthesis rates in older males. METHODS: In a parallel design, 45 older males (age: 71 ± 1 y; BMI: 25.4 ± 0.8 kg/m2) were randomly assigned to ingest a drink containing 6 g BCAA, 6 g BCKA, or 30 g MILK. Basal and postprandial myofibrillar protein synthesis rates were assessed by primed continuous l-[ring-13C6]phenylalanine infusions with the collection of blood samples and muscle biopsies. RESULTS: Plasma BCAA concentrations increased following test drink ingestion in all groups, with greater increases in the BCAA and MILK groups compared with the BCKA group (P < 0.05). Plasma BCKA concentrations increased following test drink ingestion in all groups, with greater increases in the BCKA group compared with the BCAA and MILK groups (P < 0.05). Ingestion of MILK, BCAA, and BCKA significantly increased early myofibrillar protein synthesis rates (0-2 h) above basal rates (from 0.020 ± 0.002%/h to 0.042 ± 0.004%/h, 0.022 ± 0.002%/h to 0.044 ± 0.004%/h, and 0.023 ± 0.003%/h to 0.044 ± 0.004%/h, respectively; P < 0.001), with no differences between groups (P > 0.05). Myofibrillar protein synthesis rates during the late postprandial phase (2-5 h) remained elevated in the MILK group (0.039 ± 0.004%/h; P < 0.001), but returned to baseline values following BCAA and BCKA ingestion (0.024 ± 0.005%/h and 0.024 ± 0.005%/h, respectively; P > 0.05). CONCLUSIONS: Ingestion of 6 g BCAA, 6 g BCKA, and 30 g MILK increases myofibrillar protein synthesis rates during the early postprandial phase (0-2 h) in vivo in healthy older males. The postprandial increase following the ingestion of 6 g BCAA and BCKA is short-lived, with higher myofibrillar protein synthesis rates only being maintained following the ingestion of an equivalent amount of intact milk protein. This trial was registered at Nederlands Trial Register (www.trialregister.nl) as NTR6047.


Assuntos
Aminoácidos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Cetoácidos/administração & dosagem , Proteínas Musculares/metabolismo , Idoso , Aminoácidos/sangue , Aminoácidos/química , Amônia/sangue , Glicemia/efeitos dos fármacos , Isótopos de Carbono , Método Duplo-Cego , Humanos , Insulina/sangue , Cetoácidos/sangue , Cetoácidos/química , Masculino , Proteínas Musculares/genética , Músculo Esquelético/metabolismo
20.
J Nutr ; 138(11): 2198-204, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18936219

RESUMO

We investigated the effect of carbohydrate and protein hydrolysate ingestion on whole-body and muscle protein synthesis during a combined endurance and resistance exercise session and subsequent overnight recovery. Twenty healthy men were studied in the evening after consuming a standardized diet throughout the day. Subjects participated in a 2-h exercise session during which beverages containing both carbohydrate (0.15 g x kg(-1) x h(-1)) and a protein hydrolysate (0.15 g x kg(-1) x h(-1)) (C+P, n = 10) or water only (W, n = 10) were ingested. Participants consumed 2 additional beverages during early recovery and remained overnight at the hospital. Continuous i.v. infusions with L-[ring-(13)C(6)]-phenylalanine and L-[ring-(2)H(2)]-tyrosine were applied and blood and muscle samples were collected to assess whole-body and muscle protein synthesis rates. During exercise, whole-body and muscle protein synthesis rates increased by 29 and 48% with protein and carbohydrate coingestion (P < 0.05). Fractional synthetic rates during exercise were 0.083 +/- 0.011%/h in the C+P group and 0.056 +/- 0.003%/h in the W group, (P < 0.05). During subsequent overnight recovery, whole-body protein synthesis was 19% greater in the C+P group than in the W group (P < 0.05). However, mean muscle protein synthesis rates during 9 h of overnight recovery did not differ between groups and were 0.056 +/- 0.004%/h in the C+P group and 0.057 +/- 0.004%/h in the W group (P = 0.89). We conclude that, even in a fed state, protein and carbohydrate supplementation stimulates muscle protein synthesis during exercise. Ingestion of protein with carbohydrate during and immediately after exercise improves whole-body protein synthesis but does not further augment muscle protein synthesis rates during 9 h of subsequent overnight recovery.


Assuntos
Carboidratos/farmacologia , Exercício Físico/fisiologia , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Hidrolisados de Proteína/farmacologia , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA