Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38155309

RESUMO

Biomass valorization by thermochemical conversion method is a promising and intriguing pathway due to the flexibility of utilizing a diverse group of biomass and biowastes, specific product delivery mechanism through manipulation of process parameters, and wide applicability of the products. Pyrolysis has been viewed as an effective valorization technique to transform biowastes into pyrolytic oil, solid char, and syngas. Syngas is generally fed to the pyrolysis process to generate heat necessary for the pyrolysis process to sustain. Pyrolysis may also be a subsidiary component in a biorefinery system where it draws feedstocks from refinery process residues or the side streams of the refinery operation. In recent times, pyrolysis products have been under intense research for their usability and diverse applicability. Bio-oil's rich chemical makeup has promising potential to be used as an advanced biofuel and is considered as a storehouse of diverse chemical species ranging from green solvents to bioactive chemicals. The current review provides a state of knowledge on non-fuel uses of bio-oil and concludes that the pyrolysis process and products could be a part of the future bioeconomy if designed in a manner that biowastes are transformed into value-added products which replace products of petroleum origin.

2.
Bioresour Technol ; 242: 324-328, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28501382

RESUMO

This study investigated the yields and the physicochemical properties of biochar from three different feedstocks viz., i) bioenergy byproducts (deoiled cakes of Jatropha carcus and Pongamia glabra), ii) lignocellulose biomass (Jatropha carcus seed cover), and iii) a noxious weed (Parthenium hysterophorus), obtained through slow pyrolysis at a heating rate of 40°Cmin-1 with a nitrogen flow 100mlmin-1 at a temperature range of 350-650°C. For successful utilization of biochar for C-sequestration, its ability to resist abiotic or biotic degradation was deduced from recalcitrance index R50 by using TG analysis. It was observed that the biochar produced at higher temperature had higher water holding capacity (WHC) and pH, suggesting its suitability as an amendment in soil with low water retention capacity; thus biochar may be designed to selectively improve soil chemical and physical properties by altering feedstocks and pyrolysis conditions. Biochar produced at 650°C had highest yield in the range of 28.52-39.9 wt.%.


Assuntos
Reatores Biológicos , Carvão Vegetal , Biomassa , Solo , Temperatura
3.
Bioresour Technol ; 242: 36-44, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28427816

RESUMO

In the present study, arecanut husk, an agro-processing waste of areca plam industry highly prevalent in the north-eastern region of India, was investigated for its suitability as a prospective bioenergy feedstock for thermo-chemical conversion. Pretreatment of areca husk using torrefaction was performed in a fixed bed reactor with varying reaction temperature (200, 225, 250 and 275°C). The torrefied areca husk was subsequently pyrolyzed from temperature range of 300-600°C with heating rate of 40°C/min to obtain biooil and biochar. The torrefied areca husk, pyrolysis products were characterized by using different techniques. The energy and mass yield of torrefied biomass were found to be decreased with an increase in the torrefaction temperature. Further, biochar were found to be effective in removal of As (V) from aqueous solutions but efficiency of removal was better in case of torrefied biochar. Chemical composition of bio-oil is also influenced by torrefaction process.


Assuntos
Agricultura , Eliminação de Resíduos , Biomassa , Calefação , Índia , Estudos Prospectivos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA