Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941677

RESUMO

Harnessing placebo and nocebo effects has significant implications for research and medical practice. Placebo analgesia and nocebo hyperalgesia, the most well-studied placebo and nocebo effects, are thought to initiate from the dorsal lateral prefrontal cortex (DLPFC) and then trigger the brain's descending pain modulatory system and other pain regulation pathways. Combining repeated transcranial direct current stimulation (tDCS), an expectancy manipulation model, and functional MRI, we investigated the modulatory effects of anodal and cathodal tDCS at the right DLPFC on placebo analgesia and nocebo hyperalgesia using a randomized, double-blind and sham-controlled design. We found that compared with sham tDCS, active tDCS could 1) boost placebo and blunt nocebo effects and 2) modulate brain activity and connectivity associated with placebo analgesia and nocebo hyperalgesia. These results provide a basis for mechanistic manipulation of placebo and nocebo effects and may lead to improved clinical outcomes in medical practice.


Assuntos
Analgesia/métodos , Encéfalo/fisiopatologia , Hiperalgesia/fisiopatologia , Dor/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Análise de Variância , Encéfalo/diagnóstico por imagem , Método Duplo-Cego , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Efeito Nocebo , Manejo da Dor/métodos , Efeito Placebo , Córtex Pré-Frontal/diagnóstico por imagem , Inquéritos e Questionários , Adulto Jovem
3.
Neuroimage ; 237: 118100, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33933595

RESUMO

The dynamic nature of resting-state functional magnetic resonance imaging (fMRI) brain activity and connectivity has drawn great interest in the past decade. Specific temporal properties of fMRI brain dynamics, including metrics such as occurrence rate and transitions, have been associated with cognition and behaviors, indicating the existence of mechanism distruption in neuropsychiatric disorders. The development of new methods to manipulate fMRI brain dynamics will advance our understanding of these pathophysiological mechanisms from native observation to experimental mechanistic manipulation. In the present study, we applied repeated transcranial direct current stimulation (tDCS) to the right dorsolateral prefrontal cortex (rDLPFC) and the left orbitofrontal cortex (lOFC), during multiple simultaneous tDCS-fMRI sessions from 81 healthy participants to assess the modulatory effects of stimulating target brain regions on fMRI brain dynamics. Using the rDLPFC and the lOFC as seeds, respectively, we first identified two reoccurring co-activation patterns (CAPs) and calculated their temporal properties (e.g., occurrence rate and transitions) before administering tDCS. The spatial maps of CAPs were associated with different cognitive and disease domains using meta-analytical decoding analysis. We then investigated how active tDCS compared to sham tDCS in the modulation of the occurrence rates of these different CAPs and perturbations of transitions between CAPs. We found that by enhancing neuronal excitability of the rDLPFC and the lOFC, the occurrence rate of one CAP was significantly decreased while that of another CAP was significantly increased during the first 6 min of stimulation. Furthermore, these tDCS-associated changes persisted over subsequent testing sessions (both during and before/after tDCS) across three consecutive days. Active tDCS could perturb transitions between CAPs and a non-CAP state (when the rDLPFC and the lOFC were not activated), but not the transitions within CAPs. These results demonstrate the feasibility of modulating fMRI brain dynamics, and open new possibilities for discovering stimulation targets and dynamic connectivity patterns that can ensure the propagation of tDCS-induced neuronal excitability, which may facilitate the development of new treatments for disorders with altered dynamics.


Assuntos
Mapeamento Encefálico/métodos , Excitabilidade Cortical/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Mapeamento Encefálico/normas , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Distribuição Aleatória , Estimulação Transcraniana por Corrente Contínua/normas , Adulto Jovem
4.
Radiology ; 298(2): 415-424, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289612

RESUMO

Background A framework for understanding rapid diffusion changes from 0 to 6 years of age is important in the detection of neurodevelopmental disorders. Purpose To quantify patterns of normal apparent diffusion coefficient (ADC) development from 0 to 6 years of age. Materials and Methods Previously constructed age-specific ADC atlases from 201 healthy full-term children (108 male; age range, 0-6 years) with MRI scans acquired from 2006 to 2013 at one large academic hospital were analyzed to quantify four patterns: ADC trajectory, rate of ADC change, age of ADC maturation, and hemispheric asymmetries of maturation ages. Patterns were quantified in whole-brain, segmented regional, and voxelwise levels by fitting a two-term exponential model. Hemispheric asymmetries in ADC maturation ages were assessed using t tests with Bonferroni correction. Results The posterior limb of the internal capsule (mean ADC: left hemisphere, 1.18 ×103µm2/sec; right hemisphere, 1.17 ×103µm2/sec), anterior limb of the internal capsule (left, 1.11 ×103µm2/sec; right, 1.09 ×103µm2/sec), vermis (1.26 ×103µm2/sec), thalami (left, 1.17 ×103µm2/sec; right, 1.15 ×103µm2/sec), and basal ganglia (left, 1.26 ×103µm2/sec; right, 1.23 ×103µm2/sec) demonstrate low initial ADC values, indicating an earlier prenatal time course of development. ADC maturation was completed between 1.3 and 2.4 years of age, depending on the region. The vermis and left thalamus matured earliest (1.3 years). The frontolateral gray matter matured latest (right, 2.3 years; left, 2.4 years). ADC maturation occurred earlier in the left hemisphere (P < .001) in several regions, including the frontal (mean ± standard deviation) (left, 2.16 years ± 0.29; right, 2.19 years ± 0.31), temporal (left, 1.93 years ± 0.22; right, 1.99 years ± 0.22), and parietal (left, 1.92 years ± 0.30; right, 2.03 years ± 0.28) white matter. Maturation occurred earlier in the right hemisphere (P < .001) in several regions, including the thalami (left, 1.63 years ± 0.32; right, 1.45 years ± 0.33), basal ganglia (left, 1.79 years ± 0.31; right, 1.70 years ± 0.37), and hippocampi (left, 1.93 years ± 0.34; right, 1.78 years ± 0.33). Conclusion Normative apparent diffusion coefficient developmental patterns on diffusion-weighted MRI scans were quantified in children aged 0 to 6 years. This work provides knowledge about early brain development and may guide the detection of abnormal patterns of maturation. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Rollins in this issue.


Assuntos
Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Fatores Etários , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
5.
Neuroimage ; 217: 116899, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32380138

RESUMO

Prior studies have shown that patients suffering from chronic Low Back Pain (cLBP) have impaired somatosensory processing including reduced tactile acuity, i.e. reduced ability to resolve fine spatial details with the perception of touch. The central mechanism(s) underlying reduced tactile acuity are unknown but may include changes in specific brain circuitries (e.g. neuroplasticity in the primary somatosensory cortex, S1). Furthermore, little is known about the linkage between changes in tactile acuity and the amelioration of cLBP by somatically-directed therapeutic interventions, such as acupuncture. In this longitudinal neuroimaging study, we evaluated healthy control adults (HC, N â€‹= â€‹50) and a large sample of cLBP patients (N â€‹= â€‹102) with structural brain imaging (T1-weighted MRI for Voxel-Based Morphometry, VBM; Diffusion Tensor Imaging, DTI) and tactile acuity testing using two-point discrimination threshold (2PDT) over the lower back (site of pain) and finger (control) locations. Patients were evaluated at baseline and following a 4-week course of acupuncture, with patients randomized to either verum acupuncture, two different forms of sham acupuncture (designed with or without somatosensory afference), or no-intervention usual care control. At baseline, cLBP patients demonstrated reduced acuity (greater 2PDT, P â€‹= â€‹0.01) over the low back, but not finger (P â€‹= â€‹0.29) locations compared to HC, suggesting that chronic pain affects tactile acuity specifically at body regions encoding the experience of clinical pain. At baseline, Gray Matter Volume (GMV) was elevated and Fractional Anisotropy (FA) was reduced, respectively, in the S1-back region of cLBP patients compared to controls (P â€‹< â€‹0.05). GMV in cLBP correlated with greater 2PDT-back scores (ρ â€‹= â€‹0.27, P â€‹= â€‹0.02). Following verum acupuncture, tactile acuity over the back was improved (reduced 2PDT) and greater improvements were associated with reduced S1-back GMV (ρ â€‹= â€‹0.52, P â€‹= â€‹0.03) and increased S1-back adjacent white matter FA (ρ â€‹= â€‹-0.56, P â€‹= â€‹0.01). These associations were not seen for non-verum control interventions. Thus, S1 neuroplasticity in cLBP is linked with deficits in tactile acuity and, following acupuncture therapy, may represent early mechanistic changes in somatosensory processing that track with improved tactile acuity.


Assuntos
Terapia por Acupuntura/métodos , Agnosia/fisiopatologia , Agnosia/terapia , Dor Lombar/fisiopatologia , Dor Lombar/terapia , Plasticidade Neuronal , Desempenho Psicomotor , Córtex Somatossensorial/fisiopatologia , Percepção do Tato , Adolescente , Adulto , Agnosia/etiologia , Anisotropia , Imagem de Tensor de Difusão , Discriminação Psicológica , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiopatologia , Humanos , Estudos Longitudinais , Dor Lombar/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Limiar Sensorial , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
6.
Neuroimage ; 218: 116969, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32439536

RESUMO

Chronic low back pain (cLBP) is a prevalent disorder. A growing body of evidence linking the pathology of the reward network to chronic pain suggests that pain sensitization may contribute to cLBP chronification via disruptions of mesocortical and mesolimbic circuits in the reward system. Resting-state (RS) functional magnetic resonance imaging (fMRI) data was acquired from 90 patients with cLBP and 74 matched pain-free controls (HCs) at baseline and after a manipulation for back pain intensification. The ventral tegmental area (VTA) was chosen as a seed region to perform RS functional connectivity (FC) analysis. Baseline rsFC of both the mesocortical (between the VTA and bilateral rostral anterior cingulate cortex (rACC)/and medial prefrontal cortex (mPFC)) and mesolimbic (between the VTA and bilateral hippocampus/parahippocampus) pathways was reduced in patients with cLBP (vs. HCs). In addition, patients exhibiting higher back pain intensity (compared to the relatively lower back pain intensity condition) also showed increases in both mesocortical and mesolimbic connectivity, implicating these pathways in pain downregulation in cLBP. Mediation analysis further isolated the mesolimbic (VTA-hippocampus/parahippocampus) dysconnectivity as a neural mechanism mediating the association between mechanical pain sensitivity (indexed by P40 pressure) and cLBP severity. In sum, the current study demonstrates deficient mesocorticolimbic connectivity in cLBP, with mesolimbic dysconnectivity potentially mediating the contribution of pain sensitization to pain chronification. These reward network dysfunctions and purportedly, dopaminergic dysregulations, may help us to identify key brain targets of neuromodulation in the treatment of cLBP.


Assuntos
Encéfalo/fisiopatologia , Sensibilização do Sistema Nervoso Central/fisiologia , Dor Crônica/fisiopatologia , Dor Lombar/fisiopatologia , Vias Neurais/fisiopatologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Limiar da Dor/fisiologia
7.
J Transl Med ; 17(1): 385, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752923

RESUMO

BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS: This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION: Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts. Trial Registration Not applicable. This study protocol mines existing clinical data thus does not meet the ICMJE definition of a clinical trial that requires registration.


Assuntos
Biomarcadores/metabolismo , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Algoritmos , Ensaios Clínicos como Assunto , Humanos , Recém-Nascido , Classificação Internacional de Doenças , Probabilidade , Resultado do Tratamento
8.
Neuroimage ; 174: 57-68, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462724

RESUMO

The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development.


Assuntos
Envelhecimento , Ritmo beta , Córtex Cerebral/crescimento & desenvolvimento , Ritmo Gama , Adolescente , Adulto , Mapeamento Encefálico , Criança , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Vias Neurais/crescimento & desenvolvimento , Adulto Jovem
9.
Hum Brain Mapp ; 38(6): 3052-3068, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371107

RESUMO

Diffusion imaging is critical for detecting acute brain injury. However, normal apparent diffusion coefficient (ADC) maps change rapidly in early childhood, making abnormality detection difficult. In this article, we explored clinical PACS and electronic healthcare records (EHR) to create age-specific ADC atlases for clinical radiology reference. Using the EHR and three rounds of multiexpert reviews, we found ADC maps from 201 children 0-6 years of age scanned between 2006 and 2013 who had brain MRIs with no reported abnormalities and normal clinical evaluations 2+ years later. These images were grouped in 10 age bins, densely sampling the first 1 year of life (5 bins, including neonates and 4 quarters) and representing the 1-6 year age range (an age bin per year). Unbiased group-wise registration was used to construct ADC atlases for 10 age bins. We used the atlases to quantify (a) cross-sectional normative ADC variations; (b) spatiotemporal heterogeneous ADC changes; and (c) spatiotemporal heterogeneous volumetric changes. The quantified age-specific whole-brain and region-wise ADC values were compared to those from age-matched individual subjects in our study and in multiple existing independent studies. The significance of this study is that we have shown that clinically acquired images can be used to construct normative age-specific atlases. These first of their kind age-specific normative ADC atlases quantitatively characterize changes of myelination-related water diffusion in the first 6 years of life. The quantified voxel-wise spatiotemporal ADC variations provide standard references to assist radiologists toward more objective interpretation of abnormalities in clinical images. Our atlases are available at https://www.nitrc.org/projects/mgh_adcatlases. Hum Brain Mapp 38:3052-3068, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Lesões Encefálicas/patologia , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética , Adulto , Lesões Encefálicas/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Registros Eletrônicos de Saúde/estatística & dados numéricos , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Recém-Nascido , Adulto Jovem
10.
Headache ; 56(3): 453-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26924634

RESUMO

Over the past 20 years, headache syndromes, especially migraine, have benefited significantly from the knowledge gained through neuroimaging studies. This article is focused on the neuroimaging studies of the functional organization and connectivity of the migraine brain. First, data sources and the study design elements in functional neuroimaging studies of the brain connectivity in migraine headaches are discussed. Then, the article reviews the findings to date and discusses how functional connectivity studies have contributed to a better understanding of the mechanisms of the migraine disease by extending the focus from a single region or structure to a network of regions and structures and the interactions among them. Finally, the potential scenarios for the translation of connectivity knowledge to the benefit for patients are discussed.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Neuroimagem Funcional , Transtornos de Enxaqueca/fisiopatologia , Mapeamento Encefálico/métodos , Humanos
11.
Cereb Cortex ; 25(10): 3903-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25452576

RESUMO

Fundamental aspects of human behavior operate outside of conscious awareness. Yet, theories of conditioned responses in humans, such as placebo and nocebo effects on pain, have a strong emphasis on conscious recognition of contextual cues that trigger the response. Here, we investigated the neural pathways involved in nonconscious activation of conditioned pain responses, using functional magnetic resonance imaging in healthy participants. Nonconscious compared with conscious activation of conditioned placebo analgesia was associated with increased activation of the orbitofrontal cortex, a structure with direct connections to affective brain regions and basic reward processing. During nonconscious nocebo, there was increased activation of the thalamus, amygdala, and hippocampus. In contrast to previous assumptions about conditioning in humans, our results show that conditioned pain responses can be elicited independently of conscious awareness and our results suggest a hierarchical activation of neural pathways for nonconscious and conscious conditioned responses. Demonstrating that the human brain has a nonconscious mechanism for responding to conditioned cues has major implications for the role of associative learning in behavioral medicine and psychiatry. Our results may also open up for novel approaches to translational animal-to-human research since human consciousness and animal cognition is an inherent paradox in all behavioral science.


Assuntos
Encéfalo/fisiologia , Condicionamento Clássico/fisiologia , Estado de Consciência/fisiologia , Efeito Nocebo , Percepção da Dor/fisiologia , Efeito Placebo , Adulto , Tonsila do Cerebelo/fisiologia , Conscientização/fisiologia , Mapeamento Encefálico , Sinais (Psicologia) , Feminino , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Medição da Dor , Mascaramento Perceptivo/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Subliminar , Tálamo/fisiologia , Adulto Jovem
12.
J Neurosci ; 34(11): 3924-36, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24623770

RESUMO

Placebo analgesia is an indicator of how efficiently the brain translates psychological signals conveyed by a treatment procedure into pain relief. It has been demonstrated that functional connectivity between distributed brain regions predicts placebo analgesia in chronic back pain patients. Greater network efficiency in baseline brain networks may allow better information transfer and facilitate adaptive physiological responses to psychological aspects of treatment. Here, we theorized that topological network alignments in resting state scans predict psychologically conditioned analgesic responses to acupuncture treatment in chronic knee osteoarthritis pain patients (n = 45). Analgesia was induced by building positive expectations toward acupuncture treatment with verbal suggestion and heat pain conditioning on a test site of the arm. This procedure induced significantly more analgesia after sham or real acupuncture on the test site than in a control site. The psychologically conditioned analgesia was invariant to sham versus real treatment. Efficiency of information transfer within local networks calculated with graph-theoretic measures (local efficiency and clustering coefficients) significantly predicted conditioned analgesia. Clustering coefficients in regions associated with memory, motivation, and pain modulation were closely involved in predicting analgesia. Moreover, women showed higher clustering coefficients and marginally greater pain reduction than men. Overall, analgesic response to placebo cues can be predicted from a priori resting state data by observing local network topology. Such low-cost synchronizations may represent preparatory resources that facilitate subsequent performance of brain circuits in responding to adaptive environmental cues. This suggests a potential utility of network measures in predicting placebo response for clinical use.


Assuntos
Analgesia por Acupuntura/métodos , Artralgia/psicologia , Dor Crônica/psicologia , Conectoma/psicologia , Osteoartrite do Joelho/complicações , Adaptação Psicológica/fisiologia , Artralgia/etiologia , Artralgia/fisiopatologia , Dor Crônica/etiologia , Dor Crônica/fisiopatologia , Condicionamento Psicológico/fisiologia , Conectoma/métodos , Sincronização Cortical/fisiologia , Sinais (Psicologia) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Efeito Placebo , Valor Preditivo dos Testes , Descanso/fisiologia
13.
Neuroimage ; 122: 246-61, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26260429

RESUMO

Apparent Diffusion Coefficient (ADC) maps can be used to characterize myelination and to detect abnormalities in the developing brain. However, given the normal variation in regional ADC with myelination, detection of abnormalities is difficult when based on visual assessment. Quantitative and automated analysis of pediatric ADC maps is thus desired but requires accurate brain extraction as the first step. Currently, most existing brain extraction methods are optimized for structural T1-weighted MR images of fully myelinated brains. Due to differences in age and image contrast, these approaches do not translate well to pediatric ADC maps. To address this problem, we present a multi-atlas brain extraction framework that has 1) specificity: designed and optimized specifically for pediatric ADC maps; 2) generality: applicable to multi-platform and multi-institution data, and to subjects at various neuro-developmental stages across the first 6 years of life; 3) accuracy: highly accurate compared to expert annotations; and 4) consistency: consistently accurate regardless of sources of data and ages of subjects. We show how we achieve these goals, via optimizing major components in a multi-atlas brain extraction framework, and via developing and evaluating new criteria for its atlas ranking component. Moreover, we demonstrate that these goals can be achieved with a fixed set of atlases and a fixed set of parameters, which opens doors for our optimized framework to be used in large-scale and multi-institution neuro-developmental and clinical studies. In a pilot study, we use this framework in a dataset containing scanner-generated ADC maps from 308 pediatric patients collected during the course of routine clinical care. Our framework leads to successful quantifications of the changes in whole-brain volumes and mean ADC values across the first 6 years of life.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Bainha de Mielina/fisiologia , Algoritmos , Atlas como Assunto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
14.
Neuroimage ; 112: 197-207, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25776211

RESUMO

Expectations shape the way we experience the world. In this study, we used fMRI to investigate how positive and negative expectation can change pain experiences in the same cohort of subjects. We first manipulated subjects' treatment expectation of the effectiveness of three inert creams, with one cream labeled "Lidocaine" (positive expectancy), one labeled "Capsaicin" (negative expectancy) and one labeled "Neutral" by surreptitiously decreasing, increasing, or not changing respectively, the intensity of the noxious stimuli administered following cream application. We then used fMRI to investigate the signal changes associated with administration of identical pain stimuli before and after the treatment and control creams. Twenty-four healthy adults completed the study. Results showed that expectancy significantly modulated subjective pain ratings. After controlling for changes in the neutral condition, the subjective pain rating changes evoked by positive and negative expectancies were significantly associated. fMRI results showed that the expectation of an increase in pain induced significant fMRI signal changes in the insula, orbitofrontal cortex, and periaqueductal gray, whereas the expectation of pain relief evoked significant fMRI signal changes in the striatum. No brain regions were identified as common to both "Capsaicin" and "Lidocaine" conditioning. There was also no significant association between the brain response to identical noxious stimuli in the pain matrix evoked by positive and negative expectancies. Our findings suggest that positive and negative expectancies engage different brain networks to modulate our pain experiences, but, overall, these distinct patterns of neural activation result in a correlated placebo and nocebo behavioral response.


Assuntos
Sistema Nervoso/efeitos dos fármacos , Efeito Nocebo , Efeito Placebo , Adulto , Anestésicos Locais/farmacologia , Capsaicina/farmacologia , Córtex Cerebral/fisiologia , Feminino , Temperatura Alta , Humanos , Lidocaína/farmacologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Dor/psicologia , Percepção da Dor/efeitos dos fármacos , Substância Cinzenta Periaquedutal/fisiologia , Recompensa , Enquadramento Psicológico , Adulto Jovem
15.
Mol Pain ; 11: 67, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511911

RESUMO

UNLABELLED: Recent advances in brain imaging have contributed to our understanding of the neural activity associated with acupuncture treatment. In this study, we investigated functional connectivity across longitudinal acupuncture treatments in older patients with knee osteoarthritis (OA). Over a period of 4 weeks (six treatments), we collected resting state functional magnetic resonance imaging (fMRI) scans from 30 patients before and after their first, third and sixth treatments. Clinical outcome showed a significantly greater pain subscore on the Knee Injury and Osteoarthritis Outcome Score (KOOS) (indicative of improvement) with verum acupuncture than with sham acupuncture. Independent component analysis (ICA) of the resting state fMRI data showed that the right frontoparietal network (rFPN) and the executive control network (ECN) showed enhanced functional connectivity (FC) with the rostral anterior cingulate cortex/medial prefrontal cortex, a key region in the descending pain modulatory system, in the verum groups as compared to the sham group after treatments. We also found that the rFPN connectivity with the left insula is (1) significantly associated with changes in KOOS pain score after treatments, and (2) significantly enhanced after verum acupuncture treatments as compared to sham treatment. Analysis of the acupuncture needle stimulation scan showed that compared with sham treatment, verum acupuncture activated the left operculum/insula, which also overlaps with findings observed in resting state analysis. Our results suggest that acupuncture may achieve its therapeutic effect on knee OA pain by modulating functional connectivity between the rFPN, ECN and the descending pain modulatory pathway. CLINICAL TRIAL NUMBER: NCT01079390.


Assuntos
Terapia por Acupuntura/normas , Osteoartrite do Joelho/terapia , Adulto , Idoso , Córtex Cerebral/fisiologia , Feminino , Giro do Cíngulo/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/complicações , Dor/etiologia , Medição da Dor , Lobo Parietal/fisiologia , Resultado do Tratamento
16.
Ann Intern Med ; 161(9): 650-8, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25364886

RESUMO

BACKGROUND: Atrial fibrillation (AF) is a common cause of stroke. Silent cerebral infarctions (SCIs) are known to occur in the presence and absence of AF, but the association between these disorders has not been well-defined. PURPOSE: To estimate the association between AF and SCIs and the prevalence of SCIs in stroke-free patients with AF. DATA SOURCES: Searches of MEDLINE, PsycINFO, Cochrane Library, CINAHL, and EMBASE from inception to 8 May 2014 without language restrictions and manual screening of article references. STUDY SELECTION: Observational studies involving adults with AF and no clinical history of stroke or prosthetic valves who reported SCIs. DATA EXTRACTION: Study characteristics and study quality were assessed in duplicate. DATA SYNTHESIS: Eleven studies including 5317 patients with mean ages from 50.0 to 83.6 years reported on the association between AF and SCIs. Autopsy studies were heterogeneous and low-quality; therefore, they were excluded from the meta-analysis of the risk estimates. When computed tomography (CT) and magnetic resonance imaging (MRI) studies were combined, AF was associated with SCIs in patients with no history of symptomatic stroke (odds ratio, 2.62 [95% CI, 1.81 to 3.80]; I(2) = 32.12%; P for heterogeneity = 0.118). This association was independent of AF type (paroxysmal vs. persistent). The results were not altered significantly when the analysis was restricted to studies that met at least 70% of the maximum possible quality score (odds ratio, 3.06 [CI, 2.24 to 4.19]). Seventeen studies reported the prevalence of SCIs. The overall prevalence of SCI lesions on MRI and CT among patients with AF was 40% and 22%, respectively. LIMITATION: Most studies were cross-sectional, and autopsy studies were heterogeneous and not sufficiently sensitive to detect small lesions. CONCLUSION: Atrial fibrillation is associated with more than a 2-fold increase in the odds for SCI. PRIMARY FUNDING SOURCE: Deane Institute for Integrative Research in Atrial Fibrillation and Stroke, Massachusetts General Hospital.


Assuntos
Fibrilação Atrial/complicações , Infarto Cerebral/etiologia , Idoso , Idoso de 80 Anos ou mais , Autopsia , Infarto Cerebral/diagnóstico , Humanos , Pessoa de Meia-Idade , Razão de Chances , Prevalência
17.
Proc Natl Acad Sci U S A ; 109(39): 15959-64, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23019380

RESUMO

The dominant theories of human placebo effects rely on a notion that consciously perceptible cues, such as verbal information or distinct stimuli in classical conditioning, provide signals that activate placebo effects. However, growing evidence suggest that behavior can be triggered by stimuli presented outside of conscious awareness. Here, we performed two experiments in which the responses to thermal pain stimuli were assessed. The first experiment assessed whether a conditioning paradigm, using clearly visible cues for high and low pain, could induce placebo and nocebo responses. The second experiment, in a separate group of subjects, assessed whether conditioned placebo and nocebo responses could be triggered in response to nonconscious (masked) exposures to the same cues. A total of 40 healthy volunteers (24 female, mean age 23 y) were investigated in a laboratory setting. Participants rated each pain stimulus on a numeric response scale, ranging from 0 = no pain to 100 = worst imaginable pain. Significant placebo and nocebo effects were found in both experiment 1 (using clearly visible stimuli) and experiment 2 (using nonconscious stimuli), indicating that the mechanisms responsible for placebo and nocebo effects can operate without conscious awareness of the triggering cues. This is a unique experimental verification of the influence of nonconscious conditioned stimuli on placebo/nocebo effects and the results challenge the exclusive role of awareness and conscious cognitions in placebo responses.


Assuntos
Percepção da Dor , Dor , Adulto , Feminino , Humanos , Masculino , Dor/fisiopatologia , Dor/psicologia , Efeito Placebo
18.
J Digit Imaging ; 28(2): 194-204, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25316195

RESUMO

Historically, medical images collected in the course of clinical care have been difficult to access for secondary research studies. While there is a tremendous potential value in the large volume of studies contained in clinical image archives, Picture Archiving and Communication Systems (PACS) are designed to optimize clinical operations and workflow. Search capabilities in PACS are basic, limiting their use for population studies, and duplication of archives for research is costly. To address this need, we augment the Informatics for Integrating Biology and the Bedside (i2b2) open source software, providing investigators with the tools necessary to query and integrate medical record and clinical research data. Over 100 healthcare institutions have installed this suite of software tools that allows investigators to search medical record metadata including images for specific types of patients. In this report, we describe a new Medical Imaging Informatics Bench to Bedside (mi2b2) module ( www.mi2b2.org ), available now as an open source addition to the i2b2 software platform that allows medical imaging examinations collected during routine clinical care to be made available to translational investigators directly from their institution's clinical PACS for research and educational use in compliance with the Health Insurance Portability and Accountability Act (HIPAA) Omnibus Rule. Access governance within the mi2b2 module is customizable per institution and PACS minimizing impact on clinical systems. Currently in active use at our institutions, this new technology has already been used to facilitate access to thousands of clinical MRI brain studies representing specific patient phenotypes for use in research.


Assuntos
Pesquisa Biomédica/organização & administração , Armazenamento e Recuperação da Informação , Sistemas Computadorizados de Registros Médicos/organização & administração , Sistemas de Informação em Radiologia/organização & administração , Diagnóstico por Imagem/métodos , Humanos , Inovação Organizacional , Melhoria de Qualidade , Integração de Sistemas
19.
Neuroimage ; 102 Pt 2: 275-82, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25107855

RESUMO

MRI and PET provide complementary information for studying brain function. While the potential use of simultaneous MRI/PET for clinical diagnostic and disease staging has been demonstrated recently; the biological relevance of concurrent functional MRI-PET brain imaging to dissect neurochemically distinct components of the blood oxygenation level dependent (BOLD) fMRI signal has not yet been shown. We obtained sixteen fMRI-PET data sets from eight healthy volunteers. Each subject participated in randomized order in a pain scan and a control (nonpainful pressure) scan on the same day. Dynamic PET data were acquired with an opioid radioligand, [(11)C]diprenorphine, to detect endogenous opioid releases in response to pain. BOLD fMRI data were collected at the same time to capture hemodynamic responses. In this simultaneous human fMRI-PET imaging study, we show co-localized responses in thalamus and striatum related to pain processing, while modality specific brain networks were also found. Co-localized fMRI and PET signal changes in the thalamus were positively correlated suggesting that pain-induced changes in opioid neurotransmission contribute a significant component of the fMRI signal change in this region. Simultaneous fMRI-PET provides unique opportunities allowing us to relate specific neurochemical events to functional hemodynamic activation and to investigate the impacts of neurotransmission on neurovascular coupling of the human brain in vivo.


Assuntos
Corpo Estriado/fisiopatologia , Imageamento por Ressonância Magnética , Dor/fisiopatologia , Tomografia por Emissão de Pósitrons , Tálamo/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Corpo Estriado/diagnóstico por imagem , Diprenorfina , Feminino , Humanos , Masculino , Antagonistas de Entorpecentes , Dor/diagnóstico por imagem , Receptores Opioides/metabolismo , Tálamo/diagnóstico por imagem , Adulto Jovem
20.
Hum Brain Mapp ; 35(9): 4583-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24578196

RESUMO

Our expectations about an event can strongly shape our subjective evaluation and actual experience of events. This ability, applied to the modulation of pain, has the potential to affect therapeutic analgesia substantially and constitutes a foundation for non-pharmacological pain relief. A typical example of such modulation is the placebo effect. Studies indicate that placebo may be regarded as a reward, and brain activity in the reward system is involved in this modulation process. In the present study, we combined resting-state functional magnetic resonance imaging (rs-fMRI) measures, genotype at a functional COMT polymorphism (Val158Met), and personality measures in a model to predict the magnitude of placebo conditioning effect indicated by subjective pain rating reduction to calibrated noxious stimuli. We found that the regional homogeneity (ReHo), an index of local neural coherence, in the ventral striatum, was significantly associated with conditioning effects on pain rating changes. We also found that the number of Met alleles at the COMT polymorphism was linearly correlated to the suppression of pain. In a fitted regression model, we found the ReHo in the ventral striatum, COMT genotype, and Openness scores accounted for 59% of the variance in the change in pain ratings. The model was further tested using a separate data set from the same study. Our findings demonstrate the potential of combining resting-state connectivity, genetic information, and personality to predict placebo effect.


Assuntos
Encéfalo/fisiologia , Catecol O-Metiltransferase/genética , Percepção da Dor/fisiologia , Personalidade/fisiologia , Efeito Placebo , Adulto , Mapeamento Encefálico , Corpo Estriado/fisiologia , Feminino , Técnicas de Genotipagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Medição da Dor , Personalidade/genética , Testes de Personalidade , Polimorfismo Genético , Análise de Regressão , Descanso , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA