Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 4(24): 20773-20786, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31858064

RESUMO

A 59 m-thick section of a freshwater oil shale interbedded with marlstone of Lower Carboniferous (Tournaisian) age from the Big Marsh area in Antigonish Basin, Nova Scotia, Canada, was examined using reflected light microscopy, Rock-Eval pyrolysis, X-ray diffractometry analysis, inductively coupled plasma-mass spectrometry for elemental analysis, and prompt γ for boron concentration. The oil shale was deposited in a lacustrine environment based on geology, sedimentology, variation in organic matter, and boron content (28-54 ppm). Organic petrology classified the oil shale into three broadly distinct types. Type A oil shale is a coastal facies shale containing terrestrially derived macerals, such as vitrinite and inertinite, sporinite, with some lamalginite, and amorphous bituminous matrix. Type B oil shale was deposited in a shallow-water facies and contains mostly lamalginite and some vitrinite and sporinite. Type C oil shale is a relatively deep-water facies, associated with open-water Torbanite-type oil shale and contains mostly Botryococcus colonial telalginite. The oil shale is thermally mature (T max is 441-443 °C). Total organic carbon (TOC) varies from 5.8 to 7.3 wt %, and the hydrogen index is between 507 and 557 mg HC/g TOC. The rate of sedimentation as determined by the Th/U ratio indicates possibility of three sedimentation periods: an irregular but mostly slow rate of sedimentation from the base of the section up to 68 m, followed by a regular and slow rate between 68 and 53 m, and a regular and fast rate between 53 m and the top of the section. The higher Th/U ratio during deposition of the shallow-water facies was due to the input of allochthonous U. The redox conditions, as reflected in the variation of Cr to Mo, U, and Ni + V, indicate that the oil shale was deposited under suboxic-dysoxic conditions. The high organic productivity by phytoplankton and bacteria is characterized by a low Cr and high V/Cr ratio and suboxic conditions. In contrast, the well-oxygenated and uniform, warm-temperature upper water level supports a dysoxic environment. Variation of Sr/Ca vs Mn/Ca ratios indicates that most samples have low values, a characteristic of colder water and high terrigenous influx. The post-Archean Australian shale (PAAS)-normalized rare earth elements (REEs) follow three trends. Type A oil shale has the highest concentration of total REEs (648 ppm) and light REEs (LREEs, 605 ppm) as compared with type C (269 and 233 ppm), which are less than half of type A. Type B oil shale has the lowest total REEs (184 ppm) and LREEs (152 ppm). The concentration of heavy REEs decreased from 43 ppm in type A oil shale to 36 ppm in type C oil shale. Comparison of PAAS-normalized REEs for the three oil shale types indicates a reduction of the negative Eu anomaly with depth, which is possibly related to sedimentary sorting as a result of accumulation of fine sediments in the deeper water zone of the lake. The concentration of most elements of environmental concern is similar to and/or lower than the world shale. However, there are instances of higher concentrations of hazardous elements (e.g., As, Cd, Mo, and Se).

2.
J Environ Monit ; 6(10): 787-91, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15480491

RESUMO

The nickel species in the feed coals and ash by-products from seven Canadian power plants (including one with a fluidized bed combuster) burning local subbituminous and bituminous coals with sulfur contents ranging from 0.22 to 3.6% have been examined using nickel XANES spectroscopy. XANES spectroscopy of Ni in coal and coal derived ash is complicated by a poor signal : noise ratio due to fluorescence of the much more abundant iron in the coal. Nevertheless, it has proved possible to show that the Ni environment in coals varies from largely oxidic species to mixtures of Ni-containing oxide and sulfide species. The nickel in one oxidized coal appears to be present as nickel sulfate. Nickel in all bottom and fly ash samples examined appears also to be present largely in oxygen anion environments. With the exception of one fly ash sample, for which the Ni exhibited spectral features similar to those for Ni(2+) in spinel or oxide phases, the nickel in the bottom and fly ash samples appears to exist largely as Ni(2+) in environments similar to those reported for Ni in silicate glasses. The data obtained indicate that the presence of potentially carcinogenic nickel sulfides in ash by-products from combustion of these coals is unlikely.


Assuntos
Carbono/análise , Carvão Mineral/análise , Níquel/análise , Poluentes Atmosféricos/análise , Canadá , Cinza de Carvão , Material Particulado , Centrais Elétricas , Análise Espectral/métodos , Enxofre/análise
3.
J Environ Monit ; 4(3): 400-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12094935

RESUMO

The spatial distribution and deposition of lead and zinc emitted from the Trail smelter, British Columbia, Canada, was studied by strategically locating moss bags in the area surrounding the smelter and monitoring the deposition of elements every three months. A combined diffusion/distribution model was applied to estimate the relative contribution of stack-emitted material and material emitted from the secondary sources (e.g., wind-blown dust from ore/slag storage piles, uncovered transportation/trucking of ore, and historical dust). The results indicate that secondary sources are the major contributor of lead and zinc deposited within a short distance from the smelter. Gradually, the stack emissions become the main source of Pb and Zn at greater distances from the smelter. Typical material originating from each source was characterized by SEM/EDX, which indicated a marked difference in their morphology and chemical composition.


Assuntos
Poluentes Atmosféricos/análise , Chumbo/análise , Metalurgia , Zinco/análise , Movimentos do Ar , Colúmbia Britânica , Monitoramento Ambiental , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA