Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 111(7): 1091-1094, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33342266

RESUMO

Abamectin was tested for use with solid agar media in the laboratory to eliminate or kill the common mold mite Tyrophagus spp. in fungal cultures of Phaeomoniella chlamydospora and Phaeoacremonium minimum, two important grape pathogens involved in grapevine trunk disease. Abamectin concentrations tested were at or below the recommended dosage for abamectin in greenhouse spray applications (≤625 µg/ml) to control mites and determine the following: (i) if fungal growth would be inhibited and (ii) if mites would be killed or their activity suppressed. Abamectin was either added to the media before autoclaving or filter-sterilized and added after autoclaving to test the effects of autoclaving on abamectin efficacy. Streptomycin (100 µg/ml) was also added to a set of treatments to determine whether this commonly used antibiotic would affect abamectin efficacy against mites or have an effect on fungal growth when combined with abamectin. Filter-sterilized abamectin in the range of 62.5 to 312 µg/ml, delivered to the media after autoclaving, provided the most effective control of mites while also showing limited inhibition of fungal growth on solid agar media in the absence of streptomycin. The addition of filter-sterilized streptomycin had no significant effect on fungal growth for Phaeomoniella chlamydospora, whereas for Phaeoacremonium minimum a small but significant reduction in growth with streptomycin occurred at abamectin concentrations >62.5 µg/ml.


Assuntos
Acaricidas , Ascomicetos , Ivermectina/análogos & derivados , Laboratórios , Doenças das Plantas
2.
J Ind Microbiol Biotechnol ; 44(3): 329-338, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28032229

RESUMO

This study aims to clarify the role of variegatic acid (VA) in fungal attack by Serpula lacrymans, and also the generation and scavenging of reactive oxygen species (ROS) by the fungus. VA promotes a mediated Fenton reaction to generated ROS after oxalate solubilizes oxidized forms of iron. The fungal extracellular matrix (ECM) ß-glucan scavenged ROS, and we propose this as a mechanism to protect the fungal hyphae while ROS generation is promoted to deconstruct the lignocellulose cell wall. A relatively high pH (4.4) also favored Fe(III) transfer from oxalate to VA as opposed to a lower pH (2.2) conditions, suggesting a pH-dependent Fe(III) transfer to VA employed by S. lacrymans. This permits ROS generation within the higher pH of the cell wall, while limiting ROS production near the fungal hyphae, while ß-glucan from the fungal ECM scavenges ROS in the more acidic environments surrounding the fungal hyphae.


Assuntos
Basidiomycota/metabolismo , Ácidos Carboxílicos/química , Lactonas/química , Espécies Reativas de Oxigênio/metabolismo , beta-Glucanas/metabolismo , Parede Celular/metabolismo , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Ferro/química , Lignina/metabolismo
3.
Appl Environ Microbiol ; 82(22): 6557-6572, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590806

RESUMO

Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct GtLPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses using high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed that GtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, GtLPMO9A-2 has broad specificity, cleaving at any position along the ß-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of GtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, NcLPMO9C from Neurospora crassa revealed that GtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of NcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities of GtLPMO9A-2. These results provide insight into the LPMO potential of G. trabeum and provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity. IMPORTANCE: Currently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/metabolismo , Glucanos/metabolismo , Oxigenases de Função Mista/isolamento & purificação , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Basidiomycota/genética , Parede Celular/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Cromatografia por Troca Iônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Espectrometria de Massas , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Pichia/genética , Viscosidade , Madeira/metabolismo , Madeira/microbiologia
4.
Biosci Biotechnol Biochem ; 80(12): 2473-2479, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27685324

RESUMO

This study characterized the enzymatic ability of a cell-free extract from an acidophilic (+)-catechin degrader Burkholderia oxyphila (OX-01). The crude OX-01 extracts were able to transform (+)-catechin and (-)-epicatechin into (+)-taxifolin via a leucocyanidin intermediate in a two-step oxidation. Enzymatic oxidation at the C-4 position was carried out anaerobically using H2O as an oxygen donor. The C-4 oxidation occurred only in the presence of the 2R-catechin stereoisomer, with the C-3 stereoisomer not affecting the reaction. These results suggest that the OX-01 may have evolved to target both (+)-catechin and (-)-epicatechin, which are major structural units in plants.


Assuntos
Burkholderia/enzimologia , Catequina/química , Catequina/metabolismo , Quercetina/análogos & derivados , Biotransformação , Oxigênio/metabolismo , Quercetina/química , Quercetina/metabolismo , Estereoisomerismo , Especificidade por Substrato
5.
Bioprocess Biosyst Eng ; 38(9): 1795-802, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26013992

RESUMO

Biochemical production processes require water and nutrient resources for culture media preparation, but aqueous waste is generated after the target products are extracted. In this study, culture waste (including cells) produced from a lab-scale fermenter was fed into a microbial fuel cell-membrane bioreactor (MFC-MBR) system. Electrical energy was generated via the interaction between the microbial consortia and the solid electrode in the MFC. The treated wastewater was reclaimed in this process which was reused as a solvent and a nutrient source in subsequent fermentation. Polarization testing showed that the MFC produced a maximum current density of 37.53 A m(-3) with a maximum power density of 5.49 W m(-3). The MFC was able to generate 0.04 kWh of energy per cubic meter of culture waste treated. The lab-scale fermenters containing pure cultures of an engineered Pseudomonas spp. were used to generate 2-pyrone-4,6-dicarboxylic acid (PDC), a high value platform chemical. When the MFC-MBR-treated wastewater was used for the fermenter culture medium, a specific bacterial growth rate of 1.00 ± 0.05 h(-1) was obtained with a PDC production rate of 708.11 ± 64.70 mg PDC L(-1) h(-1). Comparable values for controls using pure water were 0.95 ± 0.06 h(-1) and 621.01 ± 22.09 mg PDC L(-1) h(-1) (P > 0.05), respectively. The results provide insight on a new approach for more sustainable bio-material production while at the same time generating energy, and suggest that the treated wastewater can be used as a solvent and a nutrient source for the fermentation production of high value platform chemicals.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Reatores Biológicos/microbiologia , Meios de Cultura/metabolismo , Membranas Artificiais , Reciclagem/métodos , Eliminação de Resíduos/métodos , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Reutilização de Equipamento , Fermentação
6.
Am J Bot ; 100(9): 1751-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24018857

RESUMO

PREMISE OF THE STUDY: Coniferous bordered pits are some of the most unique and fascinating microstructures of the lignified cell wall. The pit membrane consists of a margo and a torus region, hence facilitating both xylary water transport and also limiting air intrusion by pit aspiration. Additionally, bordered pits have been reported to play a decisive role in the control of rapid liquid flow via the shrinkage and swelling of pectin. The study of the nanostructural chemical composition of pit membranes has been difficult with common imaging/chemical techniques, which involve drying and/or coating of the samples. • METHODS: Using fluorescent tagging and antibodies specific to pectin, and a His-tagged cellulose-binding module that reacts with crystalline cellulose, in combination with confocal laser scanning microscopy (CLSM) and 4Pi microscopy, we generated three-dimensional images of intact pit membranes. • KEY RESULTS: With enhanced resolution in the z-direction of the 4Pi microscope, it was possible to distinguish cellulose in the torus and the margo strands of Pinus strobus. The torus was surrounded by pectin, and a pectin ring was found at the margin of the torus. We also found differences in the structure of the pit membrane between aspirated and unaspirated pits, with a displacement of pectin to form a ring-like structure, the collapse of a void in the interior of the torus, and an apparent change in the chemical structure of cellulosic components, during the aspiration process. • CONCLUSIONS: The 4Pi microscope is well suited to scanning pit membranes to discover previously undescribed anatomical features in bordered pits and can provide information on chemical composition when used in combination with appropriate probes.


Assuntos
Membrana Celular/ultraestrutura , Microscopia Confocal/métodos , Pinus/ultraestrutura , Água/metabolismo , Anticorpos , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Lignina/metabolismo , Pectinas/metabolismo , Pinus/química , Pinus/metabolismo , Coloração e Rotulagem/métodos , Madeira/química , Madeira/metabolismo , Madeira/ultraestrutura , Xilema/química , Xilema/metabolismo , Xilema/ultraestrutura
7.
iScience ; 26(6): 106851, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37275522

RESUMO

ß-glucan is the major component of the extracellular matrix (ECM) of many fungi, including wood degrading fungi. Many of these species also secrete oxalate into the ECM. Our research demonstrates that ß-glucan forms a novel, previously unreported, hydrogel at room temperature with oxalate. Oxalate was found to alter the rheometric properties of the ß-glucan hydrogels, and modeling showed that ß-glucan hydrogen bonds with oxalate in a non-covalent matrix. Change of oxalate concentration also impacted the diffusion of a high-molecular-weight protein through the gels. This finding has relevance to the diffusion of extracellular enzymes into substrates and helps to explain why some types of wood-decay fungi rely on non-enzymatic degradation schemes for carbon cycling. Further, this research has potential impact on the diffusion of metabolites in association with pathogenic/biomedical fungi.

8.
J Fungi (Basel) ; 9(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108951

RESUMO

Fomitiporia mediterranea (Fmed) is the primary Basidiomycota species causing white rot in European vineyards affected by the Esca complex of diseases (ECD). In the last few years, an increasing number of studies have highlighted the importance of reconsidering the role of Fmed in ECD etiology, justifying an increase in research interest related to Fmed's biomolecular pathogenetic mechanisms. In the context of the current re-evaluation of the binary distinction (brown vs. white rot) between biomolecular decay pathways induced by Basidiomycota species, our research aims to investigate the potential for non-enzymatic mechanisms adopted by Fmed, which is typically described as a white rot fungus. Our results demonstrate how, in liquid culture reproducing nutrient restriction conditions often found in wood, Fmed can produce low molecular weight compounds, the hallmark of the non-enzymatic "chelator-mediated Fenton" (CMF) reaction, originally described for brown rot fungi. CMF reactions can redox cycle with ferric iron, generating hydrogen peroxide and ferrous iron, necessary reactants leading to hydroxyl radical (•OH) production. These observations led to the conclusion that a non-enzymatic radical-generating CMF-like mechanism may be utilized by Fmed, potentially together with an enzymatic pool, to contribute to degrading wood constituents; moreover, indicating significant variability between strains.

9.
Appl Microbiol Biotechnol ; 94(2): 323-38, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22391968

RESUMO

This work reviews the brown-rot fungal biochemical mechanism involved in the biodegradation of lignified plant cell walls. This mechanism has been acquired as an apparent alternative to the energetically expensive apparatus of lignocellulose breakdown employed by white-rot fungi. The mechanism relies, at least in the incipient stage of decay, on the oxidative cleavage of glycosidic bonds in cellulose and hemicellulose and the oxidative modification and arrangement of lignin upon attack by highly destructive oxygen reactive species such as the hydroxyl radical generated non-enzymatically via Fenton chemistry [Formula: see text]. Modifications in the lignocellulose macrocomponents associated with this non-enzymatic attack are believed to aid in the selective, near-complete removal of polysaccharides by an incomplete cellulase suite and without causing substantial lignin removal. Utilization of this process could provide the key to making the production of biofuel and renewable chemicals from lignocellulose biomass more cost-effective and energy efficient. This review highlights the unique features of the brown-rot fungal non-enzymatic, mediated Fenton reaction mechanism, the modifications to the major plant cell wall macrocomponents, and the implications and opportunities for biomass processing for biofuels and chemicals.


Assuntos
Fungos/metabolismo , Lignina/metabolismo , Biomassa , Biotransformação , Oxirredução
10.
Fungal Biol ; 126(8): 480-487, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851140

RESUMO

Eutypa dieback and Esca are serious fungal grapevine trunk diseases (GTDs). Eutypa dieback is caused by Eutypa lata (Elata), and is often associated Phaeoacremonium minimum (Pmin), and Phaeomoniella chlamydospora (Pch) which are also important contributors to Esca disease. Understanding the complex pathogenesis mechanisms used by these causative fungi may potentially lead targeted treatments for GTDs in the future. Elata has been reported as a wood decay "soft rot" fungus and understanding of Elata's pathogenesis chemistries can aid in controlling GTDs. Recent work that suggests that Pmin and Pch may contribute to pathogenesis by stimulating hydroxyl radical generation via secretion of low molecular weight phenolic metabolites. Building on these findings, we tested a hypothesis that antioxidants and chelators, and biocontrol agents that have been reported to secrete antioxidants and low molecular weight chelators, may inhibit the growth and activity of these fungi. Butylated hydroxy anisole (BHA) and butylated hydroxytoluene (BHT) were tested as antioxidant/chelators. BHA was found to be a highly effective control measure for the three pathogenic fungi tested at concentrations >0.5 mM. The biocontrol species Bacillus subtilis and Hypocrea (Trichoderma) atroviride were also tested, with both H. atroviride and B. subtilis effectively inhibiting growth of the three GTD fungi.


Assuntos
Micoses , Vitis , Antioxidantes/farmacologia , Hidroxianisol Butilado , Fungos , Quelantes de Ferro/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espécies Reativas de Oxigênio , Vitis/microbiologia
11.
Carbohydr Polym ; 286: 119242, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337493

RESUMO

Masson pine undergoes rapid degradation by brown-rot fungi, but how the fungus alters the microstructure of Masson pine cell wall is still unclear. In this study, Masson pine samples were incubated with Gloeophyllum trabeum to aid in characterizing changes in the crystalline structure of cellulose and chemical composition of wood in brown-rot decay. Fungal action resulted in an initial increase in wood cellulose crystallinity and crystallite width because of early removal of the more amorphous celluloses, followed by a decrease in crystallinity and crystallite size. All data suggest that hemicellulose, amorphous cellulose and crystalline cellulose are sequentially depolymerized via a non-enzymatic pathway, concurrent with early-stage changes in the rearrangement of cellulose chains and the diffusion of depolymerized less-crystalline polysaccharides out of the cell wall. Our work provides insight into the role of a non-enzymatic system in brown-rot decay as well as its potential application in lignocellulose preservation and biorefineries.


Assuntos
Basidiomycota , Pinus , Basidiomycota/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Fungos/metabolismo , Lignina/metabolismo , Pinus/química , Madeira/química
12.
Front Plant Sci ; 13: 921961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909746

RESUMO

Eutypa dieback and Esca complex are fungal diseases of grape that cause large economic losses in vineyards. These diseases require, or are enhanced by, fungal consortia growth which leads to the deterioration of the wood tissue in the grapevine trunk; however, pathogenesis and the underlying mechanisms involved in the woody tissue degradation are not understood. We examined the role that the consortia fungal metabolome have in generating oxygen radicals that could potentially play a role in trunk decay and pathogenesis. Unique metabolites were isolated from the consortia fungi with some metabolites preferentially reducing iron whereas others were involved in redox cycling to generate hydrogen peroxide. Metabolite suites with different functions were produced when fungi were grown separately vs. when grown in consortia. Chelator-mediated Fenton (CMF) chemistry promoted by metabolites from these fungi allowed for the generation of highly reactive hydroxyl radicals. We hypothesize that this mechanism may be involved in pathogenicity in grapevine tissue as a causal mechanism associated with trunk wood deterioration/necrosis in these two diseases of grape.

13.
J Ind Microbiol Biotechnol ; 38(4): 541-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20711629

RESUMO

The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe³+-reductants. Phenolates were the major compounds with Fe³+-reducing activity in both fungi and displayed Fe³+-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe³+ and H2O2 (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum--a model brown rot fungus--other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.


Assuntos
Basidiomycota/metabolismo , Coriolaceae/metabolismo , Peróxido de Hidrogênio/química , Ferro/química , Lignina/metabolismo , Oxirredução , Madeira/microbiologia
14.
Front Microbiol ; 12: 665001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322098

RESUMO

Shipworms are ecologically and economically important mollusks that feed on woody plant material (lignocellulosic biomass) in marine environments. Digestion occurs in a specialized cecum, reported to be virtually sterile and lacking resident gut microbiota. Wood-degrading CAZymes are produced both endogenously and by gill endosymbiotic bacteria, with extracellular enzymes from the latter being transported to the gut. Previous research has predominantly focused on how these animals process the cellulose component of woody plant material, neglecting the breakdown of lignin - a tough, aromatic polymer which blocks access to the holocellulose components of wood. Enzymatic or non-enzymatic modification and depolymerization of lignin has been shown to be required in other wood-degrading biological systems as a precursor to cellulose deconstruction. We investigated the genomes of five shipworm gill bacterial symbionts obtained from the Joint Genome Institute Integrated Microbial Genomes and Microbiomes Expert Review for the production of lignin-modifying enzymes, or ligninases. The genomes were searched for putative ligninases using the Joint Genome Institute's Function Profile tool and blastp analyses. The resulting proteins were then modeled using SWISS-MODEL. Although each bacterial genome possessed at least four predicted ligninases, the percent identities and protein models were of low quality and were unreliable. Prior research demonstrates limited endogenous ability of shipworms to modify lignin at the chemical/molecular level. Similarly, our results reveal that shipworm bacterial gill-symbiont enzymes are unlikely to play a role in lignin modification during lignocellulose digestion in the shipworm gut. This suggests that our understanding of how these keystone organisms digest and process lignocellulose is incomplete, and further research into non-enzymatic and/or other unknown mechanisms for lignin modification is required.

15.
PLoS One ; 15(12): e0243984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315957

RESUMO

Brown rot fungi have great potential in biorefinery wood conversion systems because they are the primary wood decomposers in coniferous forests and have an efficient lignocellulose degrading system. Their initial wood degradation mechanism is thought to consist of an oxidative radical-based system that acts sequentially with an enzymatic saccharification system, but the complete molecular mechanism of this system has not yet been elucidated. Some studies have shown that wood degradation mechanisms of brown rot fungi have diversity in their substrate selectivity. Gloeophyllum trabeum, one of the most studied brown rot species, has broad substrate selectivity and even can degrade some grasses. However, the basis for this broad substrate specificity is poorly understood. In this study, we performed RNA-seq analyses on G. trabeum grown on media containing glucose, cellulose, or Japanese cedar (Cryptomeria japonica) as the sole carbon source. Comparison to the gene expression on glucose, 1,129 genes were upregulated on cellulose and 1,516 genes were upregulated on cedar. Carbohydrate Active enZyme (CAZyme) genes upregulated on cellulose and cedar media by G. trabeum included glycoside hyrolase family 12 (GH12), GH131, carbohydrate esterase family 1 (CE1), auxiliary activities family 3 subfamily 1 (AA3_1), AA3_2, AA3_4 and AA9, which is a newly reported expression pattern for brown rot fungi. The upregulation of both terpene synthase and cytochrome P450 genes on cedar media suggests the potential importance of these gene products in the production of secondary metabolites associated with the chelator-mediated Fenton reaction. These results provide new insights into the inherent wood degradation mechanism of G. trabeum and the diversity of brown rot mechanisms.


Assuntos
Basidiomycota/genética , Lignina/metabolismo , Transcriptoma , Basidiomycota/metabolismo , Biodegradação Ambiental , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Madeira/química
16.
Int J Biol Macromol ; 153: 433-440, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109470

RESUMO

Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone.


Assuntos
Materiais Biomiméticos/química , Celulose/química , Quelantes/química , Quitina/química
17.
Front Microbiol ; 11: 1389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670241

RESUMO

Brown rot (BR) decay mechanisms employ carbohydrate-active enzymes (CAZymes) as well as a unique non-enzymatic chelator-mediated Fenton (CMF) chemistry to deconstruct lignocellulosic materials. Unlike white rot fungi, BR fungi lack peroxidases for lignin deconstruction, and also lack some endoglucanase/cellobiohydrolase activities. The role that the CMF mechanism plays in "opening up" the wood cell wall structure in advance of enzymatic action, and any interaction between CMF constituents and the selective CAZyme suite that BRs possess, is still unclear. Expression patterns for CMF redox metabolites and lytic polysaccharide monooxygenase (LPMO-AA9 family) genes showed that some LPMO isozymes were upregulated with genes associated with CMF at early stages of brown rot by Gloeophyllum trabeum. In the structural studies, wood decayed by the G. trabeum was compared to CMF-treated wood, or CMF-treated wood followed by treatment with either the early-upregulated LPMO or a commercial CAZyme cocktail. Structural modification of decayed/treated wood was characterized using small angle neutron scattering. CMF treatment produced neutron scattering patterns similar to that of the BR decay indicating that both systems enlarged the nanopore structure of wood cell walls to permit enzyme access. Enzymatic deconstruction of cellulose or lignin in raw wood samples was not achieved via CAZyme cocktail or LPMO enzyme action alone. CMF treatment resulted in depolymerization of crystalline cellulose as attack progressed from the outer regions of individual crystallites. Multiple pulses of CMF treatment on raw wood showed a progressive increase in the spacing between the cellulose elementary fibrils (EFs), indicating the CMF eroded the matrix outside the EF bundles, leading to less tightly packed EFs. Peracetic acid delignification treatment enhanced subsequent CMF treatment effects, and allowed both enzyme systems to further increase spacing of the EFs. Moreover, even after a single pulse of CMF treatment, both enzymes were apparently able to penetrate the cell wall to further increase EF spacing. The data suggest the potential for the early-upregulated LPMO enzyme to work in association with CMF chemistry, suggesting that G. trabeum may have adopted mechanisms to integrate non-enzymatic and enzymatic chemistries together during early stages of brown rot decay.

18.
J Biol Inorg Chem ; 14(8): 1253-63, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19621248

RESUMO

In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.


Assuntos
Temperatura Alta , Espectrometria de Massas/métodos , Picea , Compostos de Amônio Quaternário/química , Madeira , Biomimética , Fungos/metabolismo , Lignina/química , Lignina/metabolismo , Estrutura Molecular , Análise Multivariada , Oxirredução , Picea/química , Picea/metabolismo , Análise de Componente Principal , Madeira/química , Madeira/metabolismo
19.
Int J Biol Macromol ; 128: 340-346, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30699335

RESUMO

Chelator-mediated Fenton chemistry is capable of reducing non-stochiometric amounts of iron via hydroquinone oxidation. These types of reactions have previously been demonstrated to be promoted by some lignocellulose degrading fungi in generating hydroxyl radicals to permit lignified plant cell wall deconstruction. Here we demonstrate that lignocellulose surfaces, when exposed by chemical treatment or fragmentation, can promote a similar multi-oxidative mechanism in the presence of iron. Iron reduction by lignin surfaces permits the generation of hydroxyl radicals in the cell wall to help explain fungal non-enzymatic cell wall deconstruction, and it also provides an explanation for certain phenomenon such as the anthropogenic generation of formaldehyde by wood. The mechanism also provides a basis for the generation of electrons by lignin that are required by certain fungal redox enzymes active in plant cell wall degrading systems. Overall, the data demonstrate that iron found naturally in lignocellulose materials will promote the oxidation of phenolic lignin compounds in the naturally low pH environments occurring within lignified plant cell walls, and that this activity is promoted by cell wall fragmentation.


Assuntos
Ferro/química , Lignina/química , Fenol/química , Espécies Reativas de Oxigênio/química , Fungos/química , Fungos/metabolismo , Oxirredução , Polissacarídeos/química , Espécies Reativas de Oxigênio/metabolismo , Madeira/microbiologia
20.
J Nanosci Nanotechnol ; 8(5): 2472-4, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18572666

RESUMO

Carbon nanotubes (CNTs) were produced from wood fiber using a low temperature process, which included continuous oxidization at 240 degrees C and cyclic oxidation at 400 degrees C. The inside diameter of the CNTs was approximately 4-5 nm and the outside diameter ranged from 10 nm to 20 nm. No CNTs were produced when pure lignin and cellulose were tested indicating that the molecular and spatial arrangement of cell wall plays an important role in CNT formation. The research suggests that the chemical components in the secondary plant cell wall and their differential ablation properties are critical for the formation of CNTs at these comparatively low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA